142 research outputs found

    Mapping the tail fiber as the receptor binding protein responsible for differential host specificity of Pseudomonas aeruginosa bacteriophages PaP1 and JG004.

    Get PDF
    The first step in bacteriophage infection is recognition and binding to the host receptor, which is mediated by the phage receptor binding protein (RBP). Different RBPs can lead to differential host specificity. In many bacteriophages, such as Escherichia coli and Lactococcal phages, RBPs have been identified as the tail fiber or protruding baseplate proteins. However, the tail fiber-dependent host specificity in Pseudomonas aeruginosa phages has not been well studied. This study aimed to identify and investigate the binding specificity of the RBP of P. aeruginosa phages PaP1 and JG004. These two phages share high DNA sequence homology but exhibit different host specificities. A spontaneous mutant phage was isolated and exhibited broader host range compared with the parental phage JG004. Sequencing of its putative tail fiber and baseplate region indicated a single point mutation in ORF84 (a putative tail fiber gene), which resulted in the replacement of a positively charged lysine (K) by an uncharged asparagine (N). We further demonstrated that the replacement of the tail fiber gene (ORF69) of PaP1 with the corresponding gene from phage JG004 resulted in a recombinant phage that displayed altered host specificity. Our study revealed the tail fiber-dependent host specificity in P. aeruginosa phages and provided an effective tool for its alteration. These contributions may have potential value in phage therapy

    Robo signaling regulates the production of cranial neural crest cells

    Get PDF
    Slit/Robo signaling plays an important role in the guidance of developing neurons in developing embryos. However, it remains obscure whether and how Slit/Robo signaling is involved in the production of cranial neural crest cells. In this study, we examined Robo1 deficient mice to reveal developmental defects of mouse cranial frontal and parietal bones, which are derivatives of cranial neural crest cells. Therefore, we determined the production of HNK1+ cranial neural crest cells in early chick embryo development after knock-down (KD) of Robo1 expression. Detection of markers for pre-migratory and migratory neural crest cells, PAX7 and AP-2α, showed that production of both was affected by Robo1 KD. In addition, we found that the transcription factor slug is responsible for the aberrant delamination/EMT of cranial neural crest cells induced by Robo1 KD, which also led to elevated expression of E- and N-Cadherin. N-Cadherin expression was enhanced when blocking FGF signaling with dominant-negative FGFR1 in half of the neural tube. Taken together, we show that Slit/Robo signaling influences the delamination/EMT of cranial neural crest cells, which is required for cranial bone development

    Chromosomal DNA deletion confers phage resistance to Pseudomonas aeruginosa.

    Get PDF
    Bacteria develop a broad range of phage resistance mechanisms, such as prevention of phage adsorption and CRISPR/Cas system, to survive phage predation. In this study, Pseudomonas aeruginosa PA1 strain was infected with lytic phage PaP1, and phage-resistant mutants were selected. A high percentage (~30%) of these mutants displayed red pigmentation phenotype (Red mutant). Through comparative genomic analysis, one Red mutant PA1r was found to have a 219.6 kb genomic fragment deletion, which contains two key genes hmgA and galU related to the observed phenotypes. Deletion of hmgA resulted in the accumulation of a red compound homogentisic acid; while A galU mutant is devoid of O-antigen, which is required for phage adsorption. Intriguingly, while the loss of galU conferred phage resistance, it significantly attenuated PA1r in a mouse infection experiment. Our study revealed a novel phage resistance mechanism via chromosomal DNA deletion in P. aeruginosa

    Carbon nanotube-supported gold nanoparticles as efficient catalysts for selective oxidation of cellobiose into gluconic acid in aqueous medium

    Get PDF
    Gold nanoparticles loaded on nitric acid-pretreated carbon nanotubes are efficient for the selective oxidation of cellobiose by molecular oxygen to gluconic acid in aqueous medium without pH control; a gluconic acid yield of 80% has been obtained at 145 degrees C.NSFC [20625310, 20773099, 20873110]; National Basic Research Program of China [2010CB732303, 2005CB221408

    Acid-catalysed direct transformation of cellulose into methyl glucosides in methanol at moderate temperatures

    Get PDF
    Cellulose can be transformed into methyl glucosides in methanol with yields of 50-60% in the presence of several acid catalysts under mild conditions (<= 473 K); H3PW12O40 provides the highest turnover number (similar to 73 in 0.5 h) for the formation of methyl glucosides among many acid catalysts examined.NSF of China [20625310, 20873110, 20923004]; National Basic Program of China [2010CB732303, 2005CB221408]; Key Scientific Project of Fujian Province [2009HZ0002-1

    Hydrogen Sulfide Attenuates Carbon Tetrachloride-Induced Hepatotoxicity, Liver Cirrhosis and Portal Hypertension in Rats

    Get PDF
    BACKGROUND : Hydrogen sulfide (H(2)S) displays vasodilative, anti-oxidative, anti-inflammatory and cytoprotective activities. Impaired production of H(2)S contributes to the increased intrahepatic resistance in cirrhotic livers. The study aimed to investigate the roles of H(2)S in carbon tetrachloride (CCl(4))-induced hepatotoxicity, cirrhosis and portal hypertension.METHODS AND FINDINGS : Sodium hydrosulfide (NaHS), a donor of H(2)S, and DL-propargylglycine (PAG), an irreversible inhibitor of cystathionine &gamma;-lyase (CSE), were applied to the rats to investigate the effects of H(2)S on CCl(4)-induced acute hepatotoxicity, cirrhosis and portal hypertension by measuring serum levels of H(2)S, hepatic H(2)S producing activity and CSE expression, liver function, activity of cytochrome P450 (CYP) 2E1, oxidative and inflammatory parameters, liver fibrosis and portal pressure. CCl(4) significantly reduced serum levels of H(2)S, hepatic H(2)S production and CSE expression. NaHS attenuated CCl(4)-induced acute hepatotoxicity by supplementing exogenous H(2)S, which displayed anti-oxidative activities and inhibited the CYP2E1 activity. NaHS protected liver function, attenuated liver fibrosis, inhibited inflammation, and reduced the portal pressure, evidenced by the alterations of serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), hyaluronic acid (HA), albumin, tumor necrosis factor (TNF)-&alpha;, interleukin (IL)-1&beta;, IL-6 and soluble intercellular adhesion molecule (ICAM)-1, liver histology, hepatic hydroxyproline content and &alpha;-smooth muscle actin (SMA) expression. PAG showed opposing effects to NaHS on most of the above parameters.CONCLUSIONS :&nbsp; Exogenous H2S attenuates CCl4-induced hepatotoxicity, liver cirrhosis and portal hypertension by its multiple functions including anti-oxidation, anti-inflammation, cytoprotection and anti-fibrosis, indicating that targeting H2S may present a promising approach, particularly for its prophylactic effects, against liver cirrhosis and portal hypertension.<br /

    Controllable sliding transfer of wafer‐size graphene

    Get PDF
    The innovative design of sliding transfer based on a liquid substrate can succinctly transfer high‐quality, wafer‐size, and contamination‐free graphene within a few seconds. Moreover, it can be extended to transfer other 2D materials. The efficient sliding transfer approach can obtain high‐quality and large‐area graphene for fundamental research and industrial applications

    Liposome‑delivered baicalein induction of myeloid leukemia K562 cell death via reactive oxygen species generation

    Get PDF
    Baicalein (BL), a potential cancer chemopreventative flavone, has been reported to inhibit cancer cell growth by inducing apoptosis and causing cell cycle arrest in various human cancer cell models. Delivery of BL via nanoliposomes has been shown to improve its oral bioavailability and long‑circulating property in vivo. However, the role of BL in the inhibition of human chronic myeloid leukemia (CML) K562 cell growth and its underlying mechanisms has yet to be elucidated. In the present study, BL was formulated into liposomes with different sizes to improve its solubility and stability. The cytotoxic and pro‑apoptotic effects of free BL and liposomal BL were also evaluated. The results demonstrated that 100 nm liposomes were the most stable formulation when compared with 200 and 400 nm liposomes. Liposomal BL inhibited K562 cell growth as efficiently as free BL (prepared in DMSO), indicating that the liposome may be a potential vehicle to deliver BL for the treatment of CML. Flow cytometry analysis showed that there was significant (P<0.005) cell cycle arrest in the sub‑G1 phase (compared with vehicle control), indicating cell apoptosis following 20 ”M liposomal BL or free BL treatment of K562 cells for 48 h. The induction of cell apoptosis by all BL preparations was further confirmed through the staining of treated cells with Annexin V‑fluorescein isothiocyanate/propidium iodide. A significant increase in reactive oxygen species (ROS) gene­ration was observed in free BL and liposomal BL treated cells, with a higher level of ROS produced from those treated with free BL. This indicated that cell apoptosis induced by BL may be via ROS generation and liposome delivery may further extend the effect through its long‑circulating property

    Revealing histological and morphological features of female reproductive system in tree shrew (Tupaia belangeri)

    Get PDF
    The tree shrew has been used as a primate animal model in neuroscience studies but it has only rarely been employed in the study of reproductive systems. This is mainly because we know very little about the histological features of reproductive organs of the tree shrew. In this study, we have systematically analyzed the histology of reproductive organs of tree shrew, in comparison with human organs. The uterus of female tree shrew is uterus biomes unicolis, which is connected with an enveloped ovary through a thin fallopian tube. Histologically, the fallopian tube consists of folded mucosa, muscularis and serosa. Like other mammalian animals, the different developmental stages (primordial, primary, secondary and Graafian follicles) of ovarian follicles including inner oocyte and outer granulosa cells are embedded in the cortex. The luminal endometrium, middle muscular myometrium and serosa constitute the wall of uterus of tree shrew. The uterine endometrium contains simple columnar ciliated cells and goblet cells, and there are rich uterine glands in underlying stroma. Furthermore, these glands of tree shrew are round and smaller during anestrus, and become much longer when they are in estrus. The uterine endometrium in younger animals was less developed when compared to a mature tree shrew. Compared to human uterine endometrium, the histological features of tree shrew are very similar, indicating that it could potentially be good primate animal model for studying the diseases in reproductive system
    • 

    corecore