11 research outputs found
MiR-218 Inhibits Invasion and Metastasis of Gastric Cancer by Targeting the Robo1 Receptor
MicroRNAs play key roles in tumor metastasis. Here, we describe the regulation and function of miR-218 in gastric cancer (GC) metastasis. miR-218 expression is decreased along with the expression of one of its host genes, Slit3 in metastatic GC. However, Robo1, one of several Slit receptors, is negatively regulated by miR-218, thus establishing a negative feedback loop. Decreased miR-218 levels eliminate Robo1 repression, which activates the Slit-Robo1 pathway through the interaction between Robo1 and Slit2, thus triggering tumor metastasis. The restoration of miR-218 suppresses Robo1 expression and inhibits tumor cell invasion and metastasis in vitro and in vivo. Taken together, our results describe a Slit-miR-218-Robo1 regulatory circuit whose disruption may contribute to GC metastasis. Targeting miR-218 may provide a strategy for blocking tumor metastasis
Finishing the euchromatic sequence of the human genome
The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution
A noised phase-unwrapping method is presented by using the Wigner distribution function to filter the phase noise and restore the gradient of the phase map. By using Poisson’s equation, the unwrapped phase map was obtained. Compared with the existing methods, the proposed method is theoretically simple, provides a more accurate representation, and can be implemented in light-field hardware devices, such as Shack-Hartmann sensors
Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution
A noised phase-unwrapping method is presented by using the Wigner distribution function to filter the phase noise and restore the gradient of the phase map. By using Poisson’s equation, the unwrapped phase map was obtained. Compared with the existing methods, the proposed method is theoretically simple, provides a more accurate representation, and can be implemented in light-field hardware devices, such as Shack-Hartmann sensors
Identification and distribution of thioredoxin-like 2 as the antigen for the monoclonal antibody MC3 specific to colorectal cancer
10 páginas, 6 figuras, 2 tablas.MC3 is a colorectal cancer (CRC)-specific mAb previously prepared in our laboratory that can detect CRC with high sensitivity and specificity. However, the target antigen for MC3 had not been identified due to technological limitations. In the present study, immunocytochemistry and immunohistochemistry revealed the expression patterns of MC3 antigen (MC3-Ag) in colon cancer cell lines and CRC tissues. Western blotting analysis showed that the MC3 antibody reproducibly recognized two ∼30 kDa proteins in the total cell lysates of human colon carcinoma cell lines SW480 and HT-29. Using a proteomic approach, we identified two MC3 immunoreactive spots as two isoforms of thioredoxin-like 2 (Txl-2) protein. Further paired immunostaining showed that Txl-2 had the same expression profile as probed by the MC3 antibody. Western blotting also showed that both antibodies could detect the same two bands, further verifying that Txl-2 is the antigen of MC3 antibody. Additionally, tissue arrays revealed the expression patterns of Txl-2 in various normal and cancer tissues. Further analysis showed that Txl-2 mRNA was elevated in 18 cases of CRC tissues compared to paracancerous tissues and adjacent normal tissues.This work was supported by grants from National Natural Science Foundation of China (No. 30672399) and National High Technology Research and Development Program of China
(No. 2006AA02A253).Peer reviewe
Recommended from our members
Optimal Sensor Requirements
PATH Task ORder 6328 addresses the optimal deployment of traffic detectors on freeway to ensure that adequate information is collected at the lowest possible cost. The project team produced a study framework and tools that can be applied locally to test the sensitivity of traffic data quality to detectors location and spacing, and ultimately recommend a deployment plan.Various types of traffic detectors, including loop detectors, radars, toll tag readers and video cameras are deployed on highways. They provide the data needed to run traffic management applications such as ramp metering control, bottleneck identification, and travel times estimation. However, few studies have systematically analyzed the data requirements of these applications in terms of detector spacing and location. In other words, the trade-offs between the cost of the detectors and their benefits for traffic estimation accuracy are not well known. As a result, most highway detectors are installed using ad hoc guidelines or on a case-by-base basis, rather than through the application of measurable objectives. This in turn makes it difficult for practitioners to justify equipment and maintenance expenditures, often slowing deployment.The product of this research is two-fold. First, we developed a framework to study the sensitivity of traffic information to sensor location and spacing and reached general conclusions. Second, the team created practical tools to assist practitioners at the local level with optimal sensor deployment. These tools include recommendations for rural areas and an Excel-based model for urban areas
A Link-Node Discrete-Time Dynamic Second Best Toll Pricing Model with a Relaxation Solution Algorithm
Congestion pricing, Dynamic second best toll pricing, Dynamic user equilibrium, Relaxation algorithm,