12,193 research outputs found
Deep Learning for Single Image Super-Resolution: A Brief Review
Single image super-resolution (SISR) is a notoriously challenging ill-posed
problem, which aims to obtain a high-resolution (HR) output from one of its
low-resolution (LR) versions. To solve the SISR problem, recently powerful deep
learning algorithms have been employed and achieved the state-of-the-art
performance. In this survey, we review representative deep learning-based SISR
methods, and group them into two categories according to their major
contributions to two essential aspects of SISR: the exploration of efficient
neural network architectures for SISR, and the development of effective
optimization objectives for deep SISR learning. For each category, a baseline
is firstly established and several critical limitations of the baseline are
summarized. Then representative works on overcoming these limitations are
presented based on their original contents as well as our critical
understandings and analyses, and relevant comparisons are conducted from a
variety of perspectives. Finally we conclude this review with some vital
current challenges and future trends in SISR leveraging deep learning
algorithms.Comment: Accepted by IEEE Transactions on Multimedia (TMM
Triaxially deformed relativistic point-coupling model for hypernuclei: a quantitative analysis of hyperon impurity effect on nuclear collective properties
The impurity effect of hyperon on atomic nuclei has received a renewed
interest in nuclear physics since the first experimental observation of
appreciable reduction of transition strength in low-lying states of
hypernucleus Li. Many more data on low-lying states of
hypernuclei will be measured soon for -shell nuclei, providing good
opportunities to study the impurity effect on nuclear low-energy
excitations. We carry out a quantitative analysis of hyperon impurity
effect on the low-lying states of -shell nuclei at the beyond-mean-field
level based on a relativistic point-coupling energy density functional (EDF),
considering that the hyperon is injected into the lowest
positive-parity () and negative-parity () states. We
adopt a triaxially deformed relativistic mean-field (RMF) approach for
hypernuclei and calculate the binding energies of hypernuclei as well
as the potential energy surfaces (PESs) in deformation plane.
We also calculate the PESs for the hypernuclei with good quantum
numbers using a microscopic particle rotor model (PRM) with the same
relativistic EDF. The triaxially deformed RMF approach is further applied in
order to determine the parameters of a five-dimensional collective Hamiltonian
(5DCH) for the collective excitations of triaxially deformed core nuclei.
Taking Mg and Si as examples, we analyse
the impurity effects of and on the low-lying states of
the core nuclei...Comment: 15 pages with 18 figures and 1 table (version to be published in
Physical Review C
Photometric identification of blue horizontal branch stars
We investigate the performance of some common machine learning techniques in
identifying BHB stars from photometric data. To train the machine learning
algorithms, we use previously published spectroscopic identifications of BHB
stars from SDSS data. We investigate the performance of three different
techniques, namely k nearest neighbour classification, kernel density
estimation and a support vector machine (SVM). We discuss the performance of
the methods in terms of both completeness and contamination. We discuss the
prospect of trading off these values, achieving lower contamination at the
expense of lower completeness, by adjusting probability thresholds for the
classification. We also discuss the role of prior probabilities in the
classification performance, and we assess via simulations the reliability of
the dataset used for training. Overall it seems that no-prior gives the best
completeness, but adopting a prior lowers the contamination. We find that the
SVM generally delivers the lowest contamination for a given level of
completeness, and so is our method of choice. Finally, we classify a large
sample of SDSS DR7 photometry using the SVM trained on the spectroscopic
sample. We identify 27,074 probable BHB stars out of a sample of 294,652 stars.
We derive photometric parallaxes and demonstrate that our results are
reasonable by comparing to known distances for a selection of globular
clusters. We attach our classifications, including probabilities, as an
electronic table, so that they can be used either directly as a BHB star
catalogue, or as priors to a spectroscopic or other classification method. We
also provide our final models so that they can be directly applied to new data.Comment: To appear in A&A. 19 pages, 22 figures. Tables 7, A3 and A4 available
electronically onlin
High-fidelity interconversion between Greenberger-Horne-Zeilinger and states through Floquet-Lindblad engineering in Rydberg atom arrays
Greenberger-Horne-Zeilinger and W states feature genuine tripartite
entanglement that cannot be converted into each other by local operations and
classical communication. Here, we present a dissipative protocol for
deterministic interconversion between Greenberger-Horne-Zeilinger and W states
of three neutral Rb atoms arranged in an equilateral triangle of a
two-dimensional array. With three atomic levels and diagonal van der Waals
interactions of Rydberg atoms, the interconversion between tripartite entangled
states can be efficiently accomplished in the Floquet-Lindblad framework
through the periodic optical pump and dissipation engineering. We evaluate the
feasibility of the existing methodology using the experimental parameters
accessible to current neutral-atom platforms. We find that our scheme is robust
against typical noises, such as laser phase noise and geometric imperfections
of the atom array. In addition, our scheme can integrate the Gaussian soft
quantum control technique, which further reduces the overall conversion time
and increases the resilience to timing errors and interatomic distance
fluctuations. The high-fidelity and robust tripartite entanglement
interconversion protocol provides a route to save physical resources and
enhance the computational efficiency of quantum networks formed by neutral-atom
arrays.Comment: 18 pages, 14 figures, accepted by Physical Review Applie
The 27-day solar rotational cycle response in the mesospheric metal layers at low latitudes
To investigate the response of the meteoric metal layers in the mesosphere and lower thermosphere region to the 27-day solar rotational cycle, a long-term simulation of the Whole Atmosphere Climate Community Model (WACCM) with the chemistry of three metals (Na, K, and Fe) was analysed. The correlation between variability in the metal layers and solar 27-day forcing during different phases of the solar 11-year cycle reveals that the response in the metal layers is much stronger during solar maximum. The altitude dependent correlation and sensitivity of the metal layers to the solar spectral irradiance demonstrates that there is a significant increase in sensitivity to solar rotational cycle with increasing altitude. Above 100 km, the sensitivity of the metals to changes of 10% in the SSI at Lyman-alpha is estimated to be -5%. A similar response is seen in Na layer measurements made by the OSIRIS instrument on the Odin satellite
A unique distant submillimeter galaxy with an X-ray-obscured radio-luminous active galactic nucleus
We present a multiwavelength study of an atypical submillimeter galaxy in the
GOODS-North field, with the aim to understand its physical properties of
stellar and dust emission, as well as the central AGN activity. Although it is
shown that the source is likely an extremely dusty galaxy at high redshift, its
exact position of submillimeter emission is unknown. With the new NOEMA
interferometric imaging, we confirm that the source is a unique dusty galaxy.
It has no obvious counterpart in the optical and even NIR images observed with
HST at lambda~<1.4um. Photometric-redshift analyses from both stellar and dust
SED suggest it to likely be at z~>4, though a lower redshift at z~>3.1 cannot
be fully ruled out (at 90% confidence interval). Explaining its unusual
optical-to-NIR properties requires an old stellar population (~0.67 Gyr),
coexisting with a very dusty ongoing starburst component. The latter is
contributing to the FIR emission, with its rest-frame UV and optical light
being largely obscured along our line of sight. If the observed fluxes at the
rest-frame optical/NIR wavelengths were mainly contributed by old stars, a
total stellar mass of ~3.5x10^11Msun would be obtained. An X-ray spectral
analysis suggests that this galaxy harbors a heavily obscured AGN with
N_H=3.3x10^23 cm^-2 and an intrinsic 2-10 keV luminosity of L_X~2.6x10^44
erg/s, which places this object among distant type 2 quasars. The radio
emission of the source is extremely bright, which is an order of magnitude
higher than the star-formation-powered emission, making it one of the most
distant radio-luminous dusty galaxies. The combined characteristics of the
galaxy suggest that the source appears to have been caught in a rare but
critical transition stage in the evolution of submillimeter galaxies, where we
are witnessing the birth of a young AGN and possibly the earliest stage of its
jet formation and feedback.Comment: 13 pages in printer format, 10 figures, 1 table, accepted for
publication in the A&
- …