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One of the most essential and challenging components in climate modeling is the atmospheric model. To
solve the multi-physical atmospheric equations, developers have to face extremely complex stencil kernels
that are costly in terms of both computing and memory resources. This paper aims to accelerate the solution
of the global shallow water equations (SWEs), which is one of the most essential equation sets that describes
the atmospheric dynamics. We first design a hybrid methodology that employs both the host CPU cores and
the FPGA accelerators to work in parallel. Through a careful adjustment of the computational domains,
we achieve a balanced resource utilization and a further improvement of the overall performance. By de-
composing the resource-demanding SWEs kernel, we manage to map the double-precision algorithm into 3
FPGAs. Moreover, by using fixed-point and reduced-precision floating point arithmetic, we manage to build
a fully pipelined mixed-precision design on a single FPGA, which can perform 428 floating-point and 235
fixed-point operations per cycle. The mixed-precision design with 4 FPGAs running together can achieve a
speed up of 20 over a fully-optimized design on a CPU rack with two 8-core processors, and is 8 times faster
than the fully-optimized Kepler GPU design. As for the power efficiency, the mixed-precision design with 4
FPGAs is 10 times more power efficient than a Tianhe-1A supercomputer node.

Categories and Subject Descriptors: C.3.e [Special-Purpose and Application-Based Systems]: Recon-
figurable hardware
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1. INTRODUCTION

In recent decades, climate change has brought significant influence on human activi-
ties. Investigating the climate change mechanism has become an important research
issue among governments and research institutes. However, due to the complicated na-
ture and extremely large simulating domain, it is difficult for scientists to verify their
theories through controlled experiments as in physics and chemistry. Computer-based
modeling becomes the key method to study the climate changing mechanisms and
make predictions into future climate risks. Since the first climate modeling program
[Charney and Eliassen 1949] running on ENIAC (the first electronic digital computer),
climate research has made rapid progress with the technical revolution of computers.

Among all the different components in a climate system, the global atmospheric
circulation model is one of the most essential and challenging ones. Developers have to
face the difficulties from the complex kernels that involve multiple scales and multiple
physics, and from the requirement for high resolution that involves billions of mesh
points. These issues bring tough challenge to the computing capability of platforms,
and call for a wise manner to handle the large data set.

Current high performance platforms, such as CPU, GPU and the Intel Many Inter-
grated Core (MIC), are mostly based on multi-core or many-core architectures, and
can improve the performance not only through the increasing computing capabilities
of new architectures, but also through enabling applications to run on hundreds or
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even thousands of computing cores or vector units. However, as multi-core and many-
core architectures achieve parallelism through SIMD (single instruction multiple da-
ta) or STMD (single thread multiple data) approaches, applications with complex and
irregular computation and heavy communications, such as the upwind stencil in atmo-
spheric equations, would generally face the constraints of memory and communication
bandwidth. Moreover, the atmospheric modeling usually desires large-scale scenarios,
which brings great power consumptions and resource usages when running on tradi-
tional platforms.

Reconfigurable data flow engines, such as the FPGAs (Field Programmable Gate Ar-
rays), achieve high parallelism through a deep pipeline of computing units, and can
deploy the computation blocks through user-defined circuits rather than through pro-
cessors that take instructions. The customizable features on data presentations enable
the combination of different data types and precisions, which brings a big design space
on improving the performance and reducing the resource cost at the same time. Fur-
thermore, the magnitude of low chip frequency generally leads to great power efficiency
than traditional computing platforms.

In this paper, we propose a hybrid algorithm to solve the global shallow water equa-
tions (SWEs), which is one the most essential equation sets among the atmospheric
simulation. Our main work and contributions are:

— We first design a hybrid methodology that divides the computing domain into two
parts and employs both the CPU host and FPGA accelerators to work in parallel.
Through carefully adjusting the computational domains, we achieve a more balanced
resource usage than [Gan et al. 2013] and further improve the overall performance.

— Through decomposing the resource-demanding SWEs kernels, we manage to map
the double-precision algorithm into 3 FPGAs. Moreover, by using fixed-point and
reduced-precision floating point method, we manage to build a fully pipelined mixed-
precision design on a single FPGA, which can perform 428 floating-point and 235
fixed-point operations per cycle.

— The experimental results of the optimal multiple FPGA design demonstrate magni-
tude of improvement in both the performance and the power efficiency, and reveal
great potential on applying FPGA platforms in atmospheric simulation.

The mixed-precision design with 4 FPGAs running together can achieve a speed up
of 20 over a fully-optimized design on a CPU rack with two 8-core processors, and is
8 times faster than the fully-optimized Kepler GPU design. As for the power efficien-
cy, the mixed-precision design with 4 FPGAs is 10 times more power efficient than a
hybrid CPU-GPU Tianhe-1A supercomputer node.

The rest of the paper is organized as follows. Section 2 is the related work.Section
3 introduces the equations, discretization and the CPU algorithm. The hybrid CPU-
FPGA methodology is introduced in Section 4, followed by the description of the FPGA
double-precision design in Section 5, and mixed-precision design in Section 6. Section
7 discusses the bandwidth requirement and the implementations. The experimental
results and analysis is given in Section 8, before the paper is concluded in Section 9.

2. RELATED WORK

There are a number of atmospheric study based on traditional platforms such as CPUs
([Strand 2011], [Skamarock et al. 2005], [Johns et al. 2003]) and GPUs ([Henderson
et al. 2011], [Shimokawabe et al. 2010], [Shimokawabe et al. 2011], [Mielikainen et al.
2012], [Yang et al. 2013].Even though some experimental results demonstrate high
speed up and high scalability, the constraint of data presentations, and the fact that
traditional platforms generally consume much more power, bring a tough challenge as
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(a) The cubed-sphere mesh (b) The computational domain

Fig. 1. Mesh and computational domain.

the atmospheric kernel becomes more computationally insensitive and the resolution
becomes more fine-grained.

In recent years, we start to see some promising results using FPGAs as accelera-
tors in some key applications such as the exploration geophysics [Fu et al. 2012] and
financial computing [Tse et al. 2010], [Mingas and Bouganis 2012]. The high density
of computing logics and the reconfigurable feature on data presentations provide big
optimizing space to improve the performance.

There has been related work on mapping atmospheric simulation onto reconfig-
urable platforms. Smith et al. [Smith et al. 2005] accelerate the Parallel Spectral
Transform shallow water model using ORNL's SRC Computers. Only some subrou-
tines (FFT or LT) is deployed on the FPGA and a small speedup is gained over CPUs.
Wilhelm et al. [Wilhelm 2012] analyze a high-level approach for programming precon-
ditioners for an ocean model in climate simulations on FPGAs but do not manage any
actual acceleration. D. Oriato et al. [Oriato et al. 2012] accelerate a realistic dynamic
core of LAM model using FPGAs. It is a successful trial on reducing resource usage
through fixed-point arithmetic.

Compared with traditional architectures, reconfigurable systems have their unique
advantage in supporting mixed precisions. Significant performance improvement has
been achieved in recent efforts on applying mixed-precision designs for Monte Carlo
simulations ([Mingas and Bouganis 2012], [Chow et al. 2012]).

For kernels with a specific error requirement, Lee et al. [Lee et al. 2006] design
MiniBit, a tool to optimize bit widths of fixed-point numbers. However, for numeric
simulations that run for thousands of time steps, such as the atmospheric simulation,
it is difficult to determine the optimal bit width through analytic methods. In our work,
we design an method that can choose the best data predictions while guaranteeing the
final accuracy.

3. GLOBAL SHALLOW WATER EQUATIONS
3.1. Equations and Discretization

To simulate the atmospheric dynamics, there are a number of different equation sets
available. The shallow water equations (SWEs) are one of the most important and
the most basic ones that is widely used as the test bed for designing new simulation
methods. Shallow water equations are a set of conservation laws to simulate the wave
propagation and model the essential characteristics and dynamics of the atmosphere.
We choose a gnomonic cubed-sphere mesh as our computational mesh in this paper.
The cubed-sphere mesh (Fig. 1(a)) is obtained by mapping a cube to the surface of the
sphere. The computational domain is then the six patches (Fig. 1(b)), each of which is
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(a) The 13 point stencil. (b) Mesh points (solid dots) and its halo meshes
(empty dots).

Fig. 2. Stencil and halos.

covered with rectangular meshes. Compared with other choices such as the latitude-
longitude mesh, the cubed-sphere mesh provides better load balance for pole regions.

When written in local coordinates, SWEs have an identical expression on the six
patches, which is

0Q 10(Au'Q) 1 0(AuQ)

ot A Ozl A B2
where (x!,2%) € [—n/4,7/4] are the local coordinates, Q = (h, hu', hu?)T is the prog-
nostic variable with i being the thickness of the atmosphere and u!', 42 being the two
horizontal velocity components. In Equation (1), the variable coefficient A depends on-
ly on (x!,2?) and is invariant with time. The source term S has a complicated form
due to not only the non-orthogonality of the cubed-sphere but also the inclusion of a
possibly non-flat bottom topography; see [Yang et al. 2013] for more details.

To model the dynamics of the shallow water wave propagation in a certain period of
time, we need to loop a certain number of time steps to update the prognostic compo-
nents (h, hu' and hu?) of every mesh points.Spatially discretized with a cell-centered
finite volume method and integrated with a second-order accurate TVD Runge-Kutta
method [Gottlieb et al. 2001], solving Equation 1 is transformed into the computa-
tion of a 2-dimension 13-point upwind stencil (Fig. 2(a)). At each time step and to
get the prognostic components of the central point, the neighboring 12 points need to
be accessed. For those points in the boundary of the patch, points from neighboring
patches (the empty points in Fig. 2(b), named as halo) need to be accessed. Because
the six patches of the cubed-sphere mesh is not smoothly connected, we need to do a
1-dimension interpolation to properly transfer those halo data between patches.

+S5=0, 1)

3.2. The CPU-only Algorithm and Challenges

Algorithm 1 shows the CPU algorithm to solve the SWEs at each time step. For each
of the six cubed-sphere patch, firstly, halos must be updated (line 2). Each patch need-
s to fetch the halo values from its four neighboring patches. We use the neighboring
communication functions from the framework of PETSc (Portable Extensible Toolkit
for Scientific computation [Balay et al. 2013]) to help finish the update. Secondly, a lin-
ear interpolation (line 3) is carried out on the halo across patch interfaces to properly
transfer halo information for stencil computations. Then we do the stencil calculation
(line 4-8), which includes the computation of local coordinate based on global index j
and 7, and the computation of Flux variables, State Reconstruction, Reimann Solver
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and Source Terms (h, hu', hu?). The work flow of the CPU-only algorithm is shown in
Fig. 3(a), where all the steps are doing in serial (from @) to @).

ALGORITHM 1: The CPU only Algorithm for each stencil cycle

1: for all the six patches do

2 Halo Updating

3 Interpolations on halos when necessary

4 for all the mesh cells in each patch do //Upwind Stencil
5: Compute Local Coordinate based on global index (5, 7)
6.

7

8

9

Compute Flux, State Reconstruction, and Riemann Solver
Compute Source Terms for h, hu', hu?
end for
end for

The SWEs algorithm brings serious design challenges for efficient solutions on F-
PGA platform. Halo updating and interpolations bring data communication between
patches. The communication must be carefully handled because it would be extremely
heavy and greatly impact the overall performance when the mesh points increase to
a large scale. Boundary Interpolation also includes a lot of complex conditional state-
ments, which would consume a lot of the limited FPGA resources. Moreover, although
the upwind stencil from SWEs only involves 13 points (Fig. 2(a)), the computational
complexity is much higher than normal stencil kernels. To compute one mesh point,
we will need at least 434 ADD/SUB operations, 570 multiplications, 99 divisions, 25
square roots and 20 sine/cosine operations. The high arithmetic density and the irreg-
ular operations bring further challenge for the limited on-chip resources.

4. THE HYBRID CPU-FPGA DESIGN
4.1. Hybrid Domain Decomposition Methodology

Instead of deploying the whole computational domain into the FPGA, we design a
hybrid algorithm that utilizes both the host CPU and the FPGA simultaneously. We
decompose each of the cubed-sphere patch into the inner part and two layers (L = 2) of
outer part according to Fig. 4(a). Then we can find that all the halo exchanges (Comm.
between patches arrow in Fig. 4(a)) and boundary interpolation in Algorithm 1 only
happen in the outer part. Therefore, we assign CPU to process the outer part, and
assign FPGA to perform the more regular inner-part stencil computation. Fig. 3(b)
shows the work flow of the hybrid design. The CPU will process the halo exchanges
(D—@), interpolations (@—@) and the outer-part stencil computing (3—@), while
simultaneously, FPGA will process the inner-part stencil computation (—®)). When
both the inner part and the outer part are finished (%)), meshes along the inner-outer
boundary will be exchanged (®— ())(Comm. between CPU and FPGA arrow in Fig. 4).

Our proposed decomposition methodology has the following advantages:
— CPU is now working simultaneously with FPGA to solve the problem, which achieves

an efficient usage of both computing resources.

— The CPU time for communication and computation can be hidden in the FPGA com-
puting, which achieves a well computation-communication overlapping.

— Specifically for SWEs, all the complex conditional statements, which are expensive
in resources for FPGA to implement, is now assigned to CPU to compute.

The hybrid algorithm can also be applied to platforms with multiple FPGAs. Sup-
posing we have a computing node with m x k¥ FPGAs and multi-core CPUs, and are
handling a problem with the meshsize of N, x N, (Fig. 4(b)), we first decompose the
original patch into m x k sub-patches, so that the meshsize for each sub-patch is
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Fig. 4. Domain decomposition of our hybrid CPU-FPGA algorithm.
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Table I. The resource cost for double precision and the designs with different opti-

mizations.
Resource LUTs FFs BRAMs DSPs
double-precision 299% 220% 20% 189%
algorithm-optimization 240% 176% 17% 149%

FPGA 1 | 62.43% || 45.66% 7.77% 29.14%
algorithm-decomp. | FPGA 2 | 64.24% || 46.18% 7.71% 28.77%
FPGA 3 | 69.18% || 53.27% 27.07% 46.13%
mixed-precision 76.17% 53.41% 12.59% 44.84%

(Ng/m) x (N,/k). Here we assume that the N, and N, can be divided exactly by m
and k, respectively. Such inner patch decomposition will bring extra communications
between each sub-patches (Comm. between sub-patch arrow in Fig. 4(b)). Now we can
find that a sub-patch has the similar computational and communicating mechanism
with the original patch, with only 1/(m x k) of the computing area.

4.2. Balanced Task Partition

Based on the hybrid decomposition methodology, we can further improve the perfor-
mance through adjusting the area of inner part and outer part to a balanced partition,
where the CPU time and the FPGA time are most close. The overall performance will
increase accordingly. For example, when we set L = 2 in Fig. 4, the FPGA time for
processing the inner part is bigger than the CPU time for processing the outer part
[Gan et al. 2013]. Therefore, we can carefully track the CPU and FPGA time according
to the increase of the parameter L, and find the optimal point where the CPU time
and FPGA time are most close. In this way, parameter L will be decided for the sake of
balancing the computing time of the inner and outer parts, rather than by the shape
of the stencil, i.e., the thickness of the halo.

Based on different resolution, i.e., the computing size of the problem, the optimal val-
ue of L can be different. For a certain resolution, the CPU performance is determined
by the outer-part calculation as well as the communication and interpolation. We write
a script to automatically search and record the performance of CPU processing the
outer part according to different value of L, and compare it with the performance of
FPGA for a similar value of L. The FPGA performance for processing the inner part is
predicted based on the methodology proposed in [Fu et al. 2013].

5. A DOUBLE-PRECISION FPGA DESIGN WITH DECOMPOSED KERNELS
5.1. Resource Analysis and Algorithmic Optimization

Based on the hybrid methodology in Section 4, FPGA now only needs to process the
more regular inner-part stencil.

The resource requirement for a straightforward double-precision version on Virtex-6
SX475T can be found in the second row in Table I. Except for the BRAMs, all the other
resources cannot satisfy the requirement of the double-precision design.

We first conduct some algorithmic optimizations to reduce the resource requiremen-
t. In Algorithm 1, local coordinate computation (line 5) only relates to global index
j and i. Therefore, it can be pre-calculated during the compiling stage and stored in
ROMs that are implemented with BRAMs. In this way, extra BRAMs are occupied in
exchange for other more demanded resources. Another method is to erase the redun-
dant computations. We extract all the common factors that happen many times in the
algorithm to avoid repeated calculations. For example, if factor X happens many times
as common denominator, we extract and pre-calculate the value of 1/X, and multiply
it with other factors when needed.

While the above optimizations reduce the resource cost by 20% (third row in Table
I), the resulting design is still too large to fit into one Virtex-6 SX475T FPGA.
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Fig. 5. Algorithmic decomposition design.

5.2. Algorithmic Kernel Decomposition

Even though the overall resource requirement is too high, we can decompose the SWEs
kernel into smaller sub-kernels and use multiple FPGAs to process them respectively.

When we perform the kernel decomposition, we explore different options to achieve
the following two goals: (1). Minimized inter-communications between the different
sub-kernels, so as to avoid that the interlink between different FPGAs becomes the
performance bottleneck; (2). Balanced resource costs of different sub-kernels, so that
we can achieve a balanced utilization of different FPGAs.

Fig. 5 (a) shows the computational architecture of the SWEs algorithm. The steps of
Flux, State Reconstruction and Riemann Solver need to be performed for the compo-
nents in four different directions (left, right, top and bottom). Although the three dif-
ferent steps (Flux computation, State Reconstruction, and Riemann Solver) need to be
processed consecutively, the computation for the four different directions are relatively
independent. The computation in different directions are generally only dependent on
the variables and previous steps in the same direction. The only exception is the Rie-
mann Solver step, where the right and top components are dependent on the left and
bottom components, respectively. Therefore, to minimize the inter-communications, it
is better to decompose the algorithm by directions rather than by different steps.

As for the resource consumption, the left, right, top and bottom direction each ac-
counts for around 35% of the resources on Virtex-6 SX475T FPGA, and the Source
Term computing along requires nearly 70%. Therefore, to achieve a balanced utiliza-
tion, a natural choice is to assign the Source Terms computing module to one FPGA,
and assign the four-direction computing to another two FPGAs. Considering there are
data connections between left and right, as well as between top and bottom, we put
the left and right directions into one FPGA, and put the top and bottom directions
into another FPGA (Fig. 5 (b)). The kernel decomposition approach now allows us to
map the SWEs algorithm into 3 FPGAs. The resource usage of different FPGAs after
decomposition can be found in the fourth row in Table I.

6. A MIXED-PRECISION FPGA DESIGN

In this section, we use mixed-precision method to decrease the resource requirement,
and deploy the whole SWEs kernel into single FPGA to improve the performance.

6.1. Range Analysis

Current FPGAs are generally more efficient for fixed-point arithmetic rather than
floating-point arithmetic. Therefore, one strategy we take is to locate the region in
the program that actually computes in a small range, and replace the region from
floating-point arithmetic to fixed-point arithmetic.

ACM Transactions on Reconfigurable Technology and Systems



Solving the Global Atmospheric Equations through Heterogeneous Reconfigurable Platforms 39:9

— 10 260
0f sqrgrav § N Orelative error of divergence
- - —_ grav f:_"u 107 resource cost of LUTSs (%) m;?

. Xh regrav ’;) 7
=y H ql0h ql0hu 0 5
Sh 2 o0z
S -40) s o
- xhv E10 8

60 qlOhv 2 0 102

tm = ~
= \

-8 - ; ;

Variable X 1111(311(1153) float(8,53) float(8,48) float(8,40) float(8,32) float(8,30) float( .£4)
(a) Dynamic range of variable log2| X]|. (b) The relative error of divergence and resource
cost of LUTSs according to different floating-point bit-
widths.

Fig. 6. Mixed-precision design.

For all the different intermediate variables throughout the kernel, we first perform a
range analysis to track the range of their absolute values. As shown in Fig. 6(a), while
some variables (e.g., xhv, glOhv, and tm) cover a wide dynamic range, some other vari-
ables (e.g., xh, xhu, qlOh, ql0hu) only change within a small range. As those variables all
locate in the process of State Reconstructions, we can extract the four-direction State
Reconstruction parts, and use fixed-point data type in that module. As the values of
all variables in the State Reconstructions are located in the range of (2729 | 21), we set
the fractional bit-width to be 2, which is big enough to represent all variables.

Most variables in the remaining parts cover a wide range, which we then apply
reduced floating-point number to represent. As the maximum dynamic range of the
base-two logarithmic values of those variables are smaller than 60, floating-point with
8-bit exponent would be good enough for representing the range.

6.2. Precision Analysis

As the SWEs kernel generally involves a large number of iterations, it is difficult to
achieve meaningful results through analytic precision analysis approaches due to the
conservative assumptions. Therefore, in our approach, we determine the precision bit
width through bit-accurate simulations for different bit-width configurations. Note
that the simulation is performed based on the data of a typical benchmark scenari-
o (zonal flow over an isolated mountain), which demonstrates the typical features of
numerical atmospheric simulation.

To determine the mantissa bits, we explore a set of different bit-widths from 53 to
24 and observe the dynamic trend of the relative error of divergence and the on-chip
resource cost according to different floating-point bit-width configurations (Fig. 6(b)).

The relative error of divergence is computed by comparing the simulated divergence
against the standard data set validated in [Williamson et al. 1992], and can be used as
an important indicator for the quick estimation of the accuracy. If the relative error is
larger than 5%, the final result will no longer be true.

For brevity, hereafter float(e, m) denotes floating-point with e bits exponent and m
bits mantissa, and fixed(,f) denotes a fixed-point with 7 bits integer and f bits frac-
tion. From Fig. 6(b), for float(8,53), float(8,48), and float(8,40) settings, we observe a
similar relative error as the double-precision float(11, 53). For float(8,32), we can still
achieve a relative error of around 2%. However, when we further reduce the precision
to float(8,30), we see a surge of the relative error to a level that is far above the required
5%. The sharp accuracy reduction at float(8,30) indicates the precision threshold [Hao-
huan et al. 2009] of the SWEs. When the bit width of data keeps decreasing and cannot
satisfy the precision threshold, the accuracy will break down sharply.
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On the resource cost side, float(8,32) is also a suitable choice that reduces the LUTs
usage from around 240% to 80% of the total capacity of a Virtex-6 SX475T FPGA.

For the fixed-point variables in the Reconstruction parts, we apply a similar ap-
proach to determine the fractional bit-width to be 38. Therefore, we pick float(8,32)
and fixed(2,38) as the number representation in the algorithm.

6.3. The Architecture of the Mixed-Precision Design

Through mixed-precision arithmetic, the resource requirement is greatly decreased
(the fifth row in Table I), which enables us to fit the SWEs kernel into one FPGA.

The general architecture of the mixed-precision design is shown in Fig. 7(a). The
input streams are originally in double precision, and will be later converted into fixed-
point and go through Module 1 for the all-direction State Reconstructions. Then it will
be converted into reduced-precision floating-point and go through Module 2 for the
computation of all-direction Riemann and the Source Term. During the computation,
local coordinates are acquired through looking up the ROMs. After the computation is
finished, the results will be converted back into double precision.

7. BANDWIDTH DISCUSSION AND IMPLEMENTATIONS
7.1. Bandwidth Requirement
In the hybrid algorithm, FPGA only processes the inner-part points. Data streams will

go through the FPGA data flow engine to finish the upwind stencil operation. The
bandwidth requirement of an application would be:

Band, =S x b x fFPGA (2)

where S refers to the total number of the streams that go through the data flow engine
at each time step, b refers to the number of bytes of the data type, and frpga refers
to the frequency of the FPGA. If the bandwidth of the network Band, can satisfy the
bandwidth requirement, say

Bands > Band, 3)

It would be ideal so that all the input and output streams can be prepared in one phys-
ical cycle. For cases that can not satisfy Equation (3), we can either increase Bandy, or
decrease Band,. To improve Band,, we can use medium with higher accessing band-
width to replace the original network. To decrease Band,, we can either use the hard-
ware (de)compression scheme [Fu et al. 2013], or optimize the algorithm to decrease
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the number of streams [Yang et al. 2013] and the data bytes. We usually do not de-
crease the frequency of FPGA since such behavior will slow down the physical cycle.

7.2. Experimental Platforms and Implementations

The designs proposed in Section 5 and Section 6 can be applicable to any host systems
with FPGAs as accelerators. Here we use the MaxWorkstation and MaxNode FPGA
platforms from Maxeler [Pell and Averbukh 2012] to implement the single and multi-
ple FPGA designs, respectively.

The Maxeler MaxWorkstation [Maxeler 2011] is a small factor PC that brings the
power of dataflow computing to the desktop. MaxWorkstation contains one Intel Core
i7 quad-core CPU with 16 GB RAM, and one dataflow engine (DFE) with a Virtex-6
SX475T FPGA and 24GB on-board memory (DRAM). The DFE connects to CPU via
PCI Express gen2 x8 with a bandwidth of 8Gbytes/s. The MaxNode (MPC-C series in
[Maxeler 2011]) is a server-class HPC system, and contains 12 Intel Xeon CPU cores
and 4 DFEs. Each DFE has one Virtex-6 SX475 FPGA and 48GB on-board memory
(DRAM), and is connected with each other through the MaxRing high-speed intercon-
nect [Lindtjorn et al. 2010]. The DFEs connect to CPU via PCI Express gen2 x8. In
both platforms, we use the general-purpose MaxCompiler development environment
[Pell and Averbukh 2012] to program and optimize our designs.

We set the total meshsize of the SWEs to be 1024 x 1024 x 6, i.e., N, = N, = 1024.
Therefore, meshsize per DFE for Workstation and MaxNode would be 1024 x 1024 and
512 x 512, respectively. For both designs, FPGA will only process the inner-part com-
puting, while the host CPU will process the outer-part computing and halo updating.
We also apply OpenMP in the CPU side to fully explore the multi-core resources.

In terms of the balanced task partition proposed in Section 4.2, through tracking the
performance based on different parameter L in Fig. 4, we find that L. = 8 (instead of
L =2in [Gan et al. 2013]) is the best choice for both the 1 FPGA and 4 FPGA designs
to reach a more balanced partition and further improve the performance. The result of
the communication-computation overlapping is shown in Fig. 7(b), from which we can
find out that the CPU time is well overlapped by FPGA computing.

As for the bandwidth requirement, in the SWEs data flow engine, there are 11
double-precision streams. Assuming the FPGA runs at 100 MHz, Band, = 8.8 Gbytes/s
according to Equation (2). If all data are stored in the host CPU, Band, equals to the
bandwidth of PCle 2.0 (8 Gbytes/s), which cannot satisfy Equation (3). So we use the
DRAM on DFE, which has a much higher accessing bandwidth (38 Gbytes/s) for the
FPGA, to increase Band,. In this way, we only need to perform the data exchange of
the boundary part between the CPU and FPGA through the PCle 2.0 interface.

8. EXPERIMENTS AND ANALYSIS
8.1. Benchmark Designs

Compared with our previous work in [Gan et al. 2013], the benchmark designs in this
paper are based on more powerful platforms with the most state-of-the-art optimiza-
tions. Therefore the performances are greatly improved.

The CPU design is based on a computing rack with two Intel E5-2650 (Sandy Bridge)
CPUs . Each CPU has 8 cores and each core has two vector units. OpenMP multi-
threading, vectorization, and cache blocking are used to improve the performance.

The CPU-GPU design is based on two generations of different GPU cards. The Fermi
M2050 GPU comes from Tianhe-1A, one of China’s largest supercomputers with 7168
computing nodes. Each Tianhe-1A node is equipped with two six-core Intel X5670 C-
PUs and one Fermi GPU. Our previous work in [Yang et al. 2013] has scaled the SWEs
to over 3750 Tianhe-1A nodes and achieved a performance of 803 TFlops in double
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precision. We also have a GPU node with the more advanced Kepler 20x GPU card.
We have performed systematic optimizations [Yang et al. 2013] for both the GPU and
CPU sides, including multi-threading and GPU shared memory. The performance on
those platforms are used here to be a comparison basis for our FPGA designs. Note
that we have in this paper optimized the SWEs algorithm in Section 5.1, so we also
apply those optimizations in our CPU and GPU code for a fair comparison.

8.2. Accuracy Validation

Our numerical test is based on a model problem, zonal flow over an isolated mountain,
which is taken from the benchmark test set of [Williamson et al. 1992]. The test runs
in 100 time steps, and the meshsize is fixed to 1024 x 1024 x 6.

The numerical solutions of our programs are close in accuracy to the standard refer-
ence which has been validated in [Yang et al. 2013]. We further use mass conservation,
one of the most essential integral invariants in atmospheric simulation, to give a more
concrete accuracy comparison. Mathematically, the discretization scheme we employ
leads to exact mass conservation. Due to the truncation error, the error of mass conser-
vation is near to machine epsilon (i.e., around 10~** in double precision). This conser-
vation property can be further relaxed to, i.e., 10~!!, which indicates that at most 1%
of total mass discrepancy is introduced after a billion time steps. Fig. 8 shows the mass
relative error at each time step. Double-precision refers to the CPU standard version
and the algorithm decomposition design. FPGA-mixed refers to the mixed-precision al-
gorithm, whose relative error of FPGA-mixed maintains smaller than 10~!!, and there-
fore satisfies the accuracy requirements. We also show the case of the single-precision
FPGA version that does not satisfy the conservation requirement

8.3. Performance and Power Efficiency

Table II shows the performance (evaluated by total mesh point processed per second)
and the power efficiency (evaluated by performance per Watt) on different platform-
s. Note that the power consumption (Watt) in the single node scenario is obtained
through the direct measurement using a power meter. For hybrid designs, the mea-
sured power consumption includes both the accelerators (GPU or DFE card), and the
CPU cores that serve as the host controller and outer-part processor.

Due to the data exchange between decomposed kernels, the algorithm decomposition
design in Section 5.2 get slower than the CPU design.

Utilizing mixed-precision method greatly solves the bottleneck. The mixed-precision
design with one Virtex-6 FPGA (MaxWorstation) gains 6 times speedup over the CPU
rack with two 8-core Sandy Bridge CPUs, 4.4 times over a Tianhe-1A node, and 2.35
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Table Il. Performance And Power Efficiency

single node scenario (mesh size: 1024 x 1024 x 6)

latform performance speedu power efficiency power
p (points/second) P p (Watt) | (points/(second-Watt)) | efficiency
CPU rack 82K 1 377 217.5 1
Tianhe-1A node 110.38K 1.35x 360 306.6 1.4x
Kepler K20x 209K 2.55% 365 572.6 2.6x
Algorithm Decomp.® 22.12K 0.27x 420 52.6 0.24x
MaxWorkstaion® 481K (468.11K)° 6x 186 2.59K 12x
MaxNode? 1.59M (1.54M)¢ 19.4x 514 3.09K 14.2x
supercomputer scenario (mesh size: 25600 x 25600 x 6)
erformance ower efficienc ower
platform total nodes (}:Ix)oints/second) (pWatt) (points/(second}-’Watt)) eflf)iciency
Tianhe-A 3750 413.93M 1.35M 306.6 1
MaxNodes 264 419.76M 135.7K 3.09K 10x

aDouble-precision design in Section 5. *Mixed-precision design in Section 6.
“Value in () refers to previous optimal performance in [Gan et al. 2013], without balanced partition.

times over a Kepler 20x node. With 4 FPGAs running simultaneously, the performance
of mixed-precision MaxNode gains a speedup of 19.4 over the CPU rack, 14.4 times
over the Tianhe-1A node and 8 time over a Kepler 20x node. The performance of MaxN-
ode is equivalent to 14 nodes in the Tianhe-1A supercomputer.

As for the power efficiency, the mixed-precision design with MaxWorkStation is 8
times more power efficient than the Thianhe-1A node, and the mixed-precision design
with MaxNode is up to 10 times more power efficient than a Tianhe-1A node.

Although we do not yet have a large scale FPGA cluster to run a simulation in the
same high resolution that we have managed to run on the Tianhe-1A, in the supercom-
puter scenario of Table II, we derive a projected performance on 264 MaxNodes, which
achieves equivalent performance to 3750 Tianhe-1A nodes. In this case, to run the
same 25600x25600 resolution, the number of FPGA nodes and the power consump-
tion is only 10% of the Tianhe-1A scenario.

8.4. Analysis and discussions

Even though we have applied the latest CPU and GPU architectures that bring much
higher computing power than that in [Gan et al. 2013], and performed the most state-
of-the-art optimizations, the performance of SWEs on traditional CPU and GPUs still
cannot surpass the FPGA design that is working in a even lower frequency.

The parallelism of CPU and GPU architectures is achieved through the scaling over
the computing cores and the vector units. For the CPU design, the performance of
SWEs is improved by 15 times through OpenMP multi-threading, and is further dou-
bled through vectorization to reach the optimal record in Table II. For the GPU design,
through carefully considering the block size and the configuration between shared
memory and L1 cache, we have achieved very high computing efficiency. The multi-
processors have been fully occupied (more than 99.99% monitored through NVVP pro-
filing tool). The performance of SWEs on Kepler is doubled the performance on Fermi,
which mainly comes from the increased computing power of Kepler that has more
streaming cores (192) in each of the increased streaming multiprocessor (SMX). Al-
though CPU and GPU is highly paralleled, the extremely high density of the SWEs
algorithm has decreased the computing efficiency and prevent the performance from
further increasing. For FPGA, it achieves parallelism through a deep pipeline of con-
currency computing units. In our FPGA design, even though the FPGA device works at
a low frequency of 100MHz, we manage to build the complex kernel on a fully-pipelined
FPGA card, which can efficiently perform 428 floating-point and 235 fixed-point opera-
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tions per cycle. Meanwhile, the usage of DRAM in Section 7 manages to eliminate the
bandwidth bottleneck between CPU and FPGA. Therefore, all the input data can be
prepared ready at each cycle and go through the fully pipelined FPGA kernel.

As for the memory optimization, cache blocking in CPU, and the usage of GPU L1
cache / shared memory have contributed to the improvement of cache behavior and the
data reuse. However, the memory accessing pattern of the stencil evaluation brings a
lot of cache misses, as the neighboring points are not sequentially stored. Execution
units will have to spend more time on caching or memory addressing to access target-
ing data. The situation will get even worse with the increase of the simulating size.
For our FPGA design, through customizing the BRAMs into a window buffer (shown
as the input buffer in Fig. 7(a)), we have achieved perfect data reuse in the data access
[Fu and Clapp 2011] to efficiently eliminate the memory bottleneck.

In terms of the computation-communication overlapping achieved through the hy-
brid decomposition methodology and the balanced partition proposed in Section 4, it
would be of great importance to hide the communication efficiently, especially in the
large scale simulation, when the data exchange becomes extremely heavy.

9. CONCLUSION

In this paper, we propose a hybrid reconfigurable algorithm that employs both the CPU
and FPGA to solve the global shallow water equations in parallel. Compared with the
general FPGA methods, we have achieved more balanced utilization of both the CPU
and FPGA computational resources, and gained a well computation-communication
overlapping. By decomposing the resource-demanding SWEs kernel, we manage to
map the double-precision algorithm into 3 FPGAs. Moreover, we manage to reduce the
great resource demand through mixed-precision floating-point and fixed-point method
and build the extremely complex upwind stencil into one FPGA card.

Platforms based on single and multiple FPGAs are employed to accelerate the per-
formance. The experimental results of the optimal FPGA design demonstrate mag-
nitude of improvement in both the performance and the power efficiency over the
fully-optimized CPU and GPU programs, and reveal great potential on applying FP-
GA platforms in atmospheric simulation. Current and future work includes extending
our designs to cover various algorithms for climate modeling, and automating design
exploration to enable rapid and efficient implementations.
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