2,812 research outputs found

    The hardness-duration correlation in the two classes of gamma-ray bursts

    Get PDF
    The well-known hardness-duration correlation of gamma-ray bursts (GRBs) is investigated with the data of the 4B catalog. We find that, while the hardness ratio and the duration are obviously correlated for the entire set of the 4B catalog, they are not at all correlated for the two subsets divided at the duration of 2 seconds. However, for other subsets with comparable sizes, the two quantities are significantly correlated. The following conclusions are then reached: (1) the existence of two classes of GRBs is confirmed; (2) the hardness ratio and the duration are not at all correlated for any of the two classes; (3) different classes of GRBs have different distributions of the hardness ratio and the duration and it is this difference that causes the correlation between the two quantities for the entire set of the bursts.Comment: 5 pages, 1 figure, accepted for publication in PAS

    Prediction of the Atomization Energy of Molecules Using Coulomb Matrix and Atomic Composition in a Bayesian Regularized Neural Networks

    Full text link
    Exact calculation of electronic properties of molecules is a fundamental step for intelligent and rational compounds and materials design. The intrinsically graph-like and non-vectorial nature of molecular data generates a unique and challenging machine learning problem. In this paper we embrace a learning from scratch approach where the quantum mechanical electronic properties of molecules are predicted directly from the raw molecular geometry, similar to some recent works. But, unlike these previous endeavors, our study suggests a benefit from combining molecular geometry embedded in the Coulomb matrix with the atomic composition of molecules. Using the new combined features in a Bayesian regularized neural networks, our results improve well-known results from the literature on the QM7 dataset from a mean absolute error of 3.51 kcal/mol down to 3.0 kcal/mol.Comment: Under review ICANN 201

    Seeing Tree Structure from Vibration

    Full text link
    Humans recognize object structure from both their appearance and motion; often, motion helps to resolve ambiguities in object structure that arise when we observe object appearance only. There are particular scenarios, however, where neither appearance nor spatial-temporal motion signals are informative: occluding twigs may look connected and have almost identical movements, though they belong to different, possibly disconnected branches. We propose to tackle this problem through spectrum analysis of motion signals, because vibrations of disconnected branches, though visually similar, often have distinctive natural frequencies. We propose a novel formulation of tree structure based on a physics-based link model, and validate its effectiveness by theoretical analysis, numerical simulation, and empirical experiments. With this formulation, we use nonparametric Bayesian inference to reconstruct tree structure from both spectral vibration signals and appearance cues. Our model performs well in recognizing hierarchical tree structure from real-world videos of trees and vessels.Comment: ECCV 2018. The first two authors contributed equally to this work. Project page: http://tree.csail.mit.edu

    Effect of strengthened standards on Chinese ironmaking and steelmaking emissions

    Get PDF
    China has produced roughly half of the world’s steel in recent years, but the country’s iron and steel industry is a major source of air pollutants, especially particulate matter, SO2 and NOx emissions. To reduce such emissions, China imposed new emission standards in 2015 and promoted ultralow emission standards in 2019. Here we use measurements from China’s continuous emissions monitoring systems (covering 69–91% of national iron and steel production) to develop hourly, facility-level emissions estimates for China’s iron and steel industry. In turn, we use this data to evaluate the emission reductions related to China’s increasingly stringent policies. We find steady declines in emission concentrations at iron- and steelmaking plants since the 2015 standards were implemented. From 2014 to 2018, particulate matter and SO2 emissions fell by 47% and 42%, respectively, and NOx increased by 3%, even as the production increased by 14%. Moreover, we estimate that if all facilities achieve the ultralow emission standards, particulate matter, SO2 and NOx emissions will drop by a further 50%, 37% and 58%, respectively. Our results thus reveal the substantial benefits of the Chinese government’s interventions to curb emissions from iron and steel production and emphasize the promise of ongoing ultralow emission renovations

    H-alpha +[NII] Observations of the HII Regions in M81

    Full text link
    In a first of a series of studies of the H-alpha + [NII] emission from nearby spiral galaxies, we present measurements of H-alpha + [NII] emission from HII regions in M81. Our method uses large-field-CCD images and long-slit spectra, and is part of the ongoing Beijing-Arizona-Taipei-Connecticut Sky Survey. The CCD images are taken with the NAOC 0.6/0.9m f/3 Schmidt telescope at the Xinglong Observing Station, using a multicolor filter set. Spectra of 10 of the brightest HII regions are obtained using the NAOC 2.16m telescope with a Tek 1024 X 1024 CCD. The continua of the spectra are calibrated by flux-calibrated images taken from the Schmidt observations. We determine the continuum component of our H-alpha + [NII] image via interpolation from the more accurately-measured backgrounds (M81 starlight) obtained from the two neighboring (in wavelength) BATC filter images. We use the calibrated fluxes of H-alpha + [NII] emission from the spectra to normalize this interpolated, continuum-subtracted H-alpha + [NII] image. We estimate the zero point uncertainty of the measured H-alpha + [NII] emission flux to be ∼\sim 8%. A catalogue of H-alpha + [NII] fluxes for 456 HII regions is provided, with those fluxes are on a more consistent linear scale than previously available. The logarithmically-binned H-alpha + [NII] luminosity function of HII regions is found to have slope α\alpha = -0.70, consistent with previous results (which allowed α=−0.5∼−0.8\alpha=-0.5 \sim -0.8). From the overall H-alpha + [NII] luminosity of the HII regions, the star formation rate of M81 is found to be ∼0.68M⊙yr−1\sim 0.68 M_{\odot} {\rm yr}^{-1}, modulo uncertainty with extinction corrections.Comment: 18 pages, 7 figures, accepted for publication in the Astronomical Journa

    Localisation and interactions of the Vipp1 protein in cyanobacteria

    Get PDF
    Biotechnology and Biological Sciences Research Council. Grant Number: BB/G021856. Deutsche Forschungsgemeinschaft. Grant Number: FOR 929, SCHN 690/3-1. European Commission. Grant Number: FP7-PEOPLE-2009-IEF 254575. NFR. Grant Numbers: 192436, 197119. OCISB. Royal Society and Engineering and Physical Sciences Research Council. Grant Number: EP/G0061009/

    Dense transcript profiling in single cells by image correlation decoding

    Get PDF
    Sequential barcoded fluorescent in situ hybridization (seqFISH) allows large numbers of molecular species to be accurately detected in single cells, but multiplexing is limited by the density of barcoded objects. We present correlation FISH (corrFISH), a method to resolve dense temporal barcodes in sequential hybridization experiments. Using corrFISH, we quantified highly expressed ribosomal protein genes in single cultured cells and mouse thymus sections, revealing cell-type-specific gene expression

    Use of a Semi-field System to Evaluate the Efficacy of Topical Repellents under user Conditions Provides a Disease Exposure free Technique Comparable with Field Data.

    Get PDF
    Before topical repellents can be employed as interventions against arthropod bites, their efficacy must be established. Currently, laboratory or field tests, using human volunteers, are the main methods used for assessing the efficacy of topical repellents. However, laboratory tests are not representative of real life conditions under which repellents are used and field-testing potentially exposes human volunteers to disease. There is, therefore, a need to develop methods to test efficacy of repellents under real life conditions while minimizing volunteer exposure to disease. A lotion-based, 15% N, N-Diethyl-3-methylbenzamide (DEET) repellent and 15% DEET in ethanol were compared to a placebo lotion in a 200 sq m (10 m x 20 m) semi-field system (SFS) against laboratory-reared Anopheles arabiensis mosquitoes and in full field settings against wild malaria vectors and nuisance-biting mosquitoes. The average percentage protection against biting mosquitoes over four hours in the SFS and field setting was determined. A Poisson regression model was then used to determine relative risk of being bitten when wearing either of these repellents compared to the placebo. Average percentage protection of the lotion-based 15% DEET repellent after four hours of mosquito collection was 82.13% (95% CI 75.94-88.82) in the semi-field experiments and 85.10% (95% CI 78.97-91.70) in the field experiments. Average percentage protection of 15% DEET in ethanol after four hours was 71.29% (CI 61.77-82.28) in the semi-field system and 88.24% (84.45-92.20) in the field. Semi-field evaluation results were comparable to full-field evaluations, indicating that such systems could be satisfactorily used in measuring efficacy of topically applied mosquito repellents, thereby avoiding risks of exposure to mosquito-borne pathogens, associated with field testing

    Global supply-chain effects of COVID-19 control measures

    Get PDF
    Countries have sought to stop the spread of coronavirus disease 2019 (COVID-19) by severely restricting travel and in-person commercial activities. Here, we analyse the supply-chain effects of a set of idealized lockdown scenarios, using the latest global trade modelling framework. We find that supply-chain losses that are related to initial COVID-19 lockdowns are largely dependent on the number of countries imposing restrictions and that losses are more sensitive to the duration of a lockdown than its strictness. However, a longer containment that can eradicate the disease imposes a smaller loss than shorter ones. Earlier, stricter and shorter lockdowns can minimize overall losses. A ‘go-slow’ approach to lifting restrictions may reduce overall damages if it avoids the need for further lockdowns. Regardless of the strategy, the complexity of global supply chains will magnify losses beyond the direct effects of COVID-19. Thus, pandemic control is a public good that requires collective efforts and support to lower-capacity countries
    • …
    corecore