416 research outputs found

    Efecto de reemplazar estearina por oleína de palma en galletas de papa horneadas

    Get PDF
    Potato cookies were formulated by replacing red palm stearin (RPS) by red palm olein (RPOL) at 0, 17 and 35%, and then baked at 160, 180 and 200 °C for 10, 12 and 15 min. The sensory analysis, using an orthogonal test, showed that a RPS-RPOL ratio of 65:35, baking temperature of 160 ºC, and baking time 12 min were the optimal conditions. Cookies made from 65% RPS + 35% RPOL composition exhibited 0.6 times less squalene, but 1.5 times more β-carotene, tocopherols and tocotrienols than the mixture of RPS and RPOL at 100:0. In addition, cookies with superior oxidative stability were obtained at a lower temperature (160 ºC) and short baking time (10 min). This study demonstrates that the application of RPOL and RPS blending can positively enhance the nutritional properties and oxidative stability of baked food, and that using potato in the baking processing may be beneficial.Las galletas de papa fueron formuladas reemplazando estearina de palma roja (RPS) por oleina de palma roja (RPOL) al 0, 17 y 35%, y posteriormente horneadas a 160, 180 y 200°C durante 10, 12 y 15 min. El análisis sensorial utilizando una prueba ortogonal mostró que la relación RPS-RPOL 65:35, la temperatura de horneado 160 ºC, y el tiempo de horneado 12 min fueron las condiciones óptimas. Las galletas hechas de 65% RPS + 35% RPOL presentan 0,6 veces menos de escualeno, pero 1,5 veces más β-caroteno, tocoferoles y tocotrienoles que la mezcla de RPS y RPOL en 100:0. Por otra parte, las galletas con mayor estabilidad oxidativa se obtuvieron a menor temperatura (160 ºC) y menor tiempo de horneado (10 min). Este estudio demuestra que la mezcla RPOL y RPS puede mejorar positivamente las propiedades nutricionales y la estabilidad oxidativa de los alimentos horneados, y que el uso de papa en el procesamiento de hornear puede ser beneficioso

    Dimensional Crossover in the Effective Second Harmonic Generation of Films of Random Dielectrics

    Full text link
    The effective nonlinear response of films of random composites consisting of a binary composite with nonlinear particles randomly embedded in a linear host is theoretically and numerically studied. A theoretical expression for the effective second harmonic generation susceptibility, incorporating the thickness of the film, is obtained by combining a modified effective-medium approximation with the general expression for the effective second harmonic generation susceptibility in a composite. The validity of the thoretical results is tested against results obtained by numerical simulations on random resistor networks. Numerical results are found to be well described by our theory. The result implies that the effective-medium approximation provides a convenient way for the estimation of the nonlinear response in films of random dielectrics.Comment: 9 pages, 2 figures; accepted for publication in Phys. Rev.

    The role of cellular instability on the critical tube diameter problem for unstable gaseous detonations

    Get PDF
    The transmission of detonation waves, propagating in a homogeneous, gaseous, reactive medium, from a tube into an unconfined space is well known to succeed or fail based on the tube diameter. Below a certain diameter, the detonation fails to transition into the unconfined space, while for a large enough geometry, the transition succeeds. This critical diameter is well correlated to the incoming detonation cell size. For common undiluted hydrocarbon mixtures with a strong degree of transverse instability, the ratio of critical tube diameter to cell size has been measured at Dc = 13λ. In this paper, stoichiometric acetylene-oxygen mixture at different initial pressures is detonated in a circular tube that transitions into an effectively unconfined space. The transition is observed with simultaneous schlieren photography and soot foil records to look at the role of transverse cellular instability. Three regimes of transition are observed: supercritical, where the cellular pattern is continuously connected from the donor tube to the larger space; subcritical, where the wave fails and the cellular pattern disappears; and a critical regime, where the wave initially fails, asymptoting to a weakly decoupled shock-reaction front regime, and exhibits a subsequent re-initiation in a critical zone of pre-shocked gas through the onset of an explosion bubble. A substantial amount of transverse instability remains even after the expansion wave reaches the central axis, sustaining the diffracted wave at a critical thermodynamic state for the re-initiation. The location of this critical zone is identified at about 22λ and a small obstacle is used to promote the generation of transverse waves and a re-initiation kernel. The re-initiation is effected by placing an obstacle in the critical region. The role of the resulting instability is also illustrated through a simple numerical simulation using an obstacle in the sub-critical regime to perturb the flow and promote the re-initiation

    Second Harmonic Generation for a Dilute Suspension of Coated Particles

    Full text link
    We derive an expression for the effective second-harmonic coefficient of a dilute suspension of coated spherical particles. It is assumed that the coating material, but not the core or the host, has a nonlinear susceptibility for second-harmonic generation (SHG). The resulting compact expression shows the various factors affecting the effective SHG coefficient. The effective SHG per unit volume of nonlinear coating material is found to be greatly enhanced at certain frequencies, corresponding to the surface plasmon resonance of the coated particles. Similar expression is also derived for a dilute suspension of coated discs. For coating materials with third-harmonic (THG) coefficient, results for the effective THG coefficients are given for the cases of coated particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.

    Multiple superconducting gap and anisotropic spin fluctuations in iron arsenides: Comparison with nickel analog

    Full text link
    We present extensive 75As NMR and NQR data on the superconducting arsenides PrFeAs0.89F0.11 (Tc=45 K), LaFeAsO0.92F0.08 (Tc=27 K), LiFeAs (Tc = 17 K) and Ba0.72K0.28Fe2As2 (Tc = 31.5 K) single crystal, and compare with the nickel analog LaNiAsO0.9F0.1 (Tc=4.0 K) . In contrast to LaNiAsO0.9F0.1 where the superconducting gap is shown to be isotropic, the spin lattice relaxation rate 1/T1 in the Fe-arsenides decreases below Tc with no coherence peak and shows a step-wise variation at low temperatures. The Knight shift decreases below Tc and shows a step-wise T variation as well. These results indicate spinsinglet superconductivity with multiple gaps in the Fe-arsenides. The Fe antiferromagnetic spin fluctuations are anisotropic and weaker compared to underdoped copper-oxides or cobalt-oxide superconductors, while there is no significant electron correlations in LaNiAsO0.9F0.1. We will discuss the implications of these results and highlight the importance of the Fermi surface topology.Comment: 6 pages, 11 figure

    Mass measurements of neutron-deficient Y, Zr, and Nb isotopes and their impact on rp and νp nucleosynthesis processes

    Get PDF
    © 2018 The Authors. Published by Elsevier B.V. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Using isochronous mass spectrometry at the experimental storage ring CSRe in Lanzhou, the masses of 82Zr and 84Nb were measured for the first time with an uncertainty of ∼10 keV, and the masses of 79Y, 81Zr, and 83Nb were re-determined with a higher precision. The latter are significantly less bound than their literature values. Our new and accurate masses remove the irregularities of the mass surface in this region of the nuclear chart. Our results do not support the predicted island of pronounced low α separation energies for neutron-deficient Mo and Tc isotopes, making the formation of Zr–Nb cycle in the rp-process unlikely. The new proton separation energy of 83Nb was determined to be 490(400) keV smaller than that in the Atomic Mass Evaluation 2012. This partly removes the overproduction of the p-nucleus 84Sr relative to the neutron-deficient molybdenum isotopes in the previous νp-process simulations.Peer reviewe

    Size-resolved and bulk activation properties of aerosols in the North China Plain

    Get PDF
    Size-resolved and bulk activation properties of aerosols were measured at a regional/suburban site in the North China Plain (NCP), which is occasionally heavily polluted by anthropogenic aerosol particles and gases. A Cloud Condensation Nuclei (CCN) closure study is conducted with bulk CCN number concentration (NCCN) and calculated CCN number concentration based on the aerosol number size distribution and size-resolved activation properties. The observed CCN number concentration (NCCN-obs) are higher than those observed in other locations than China, with average NCCN-obs of roughly 2000, 3000, 6000, 10 000 and 13 000 cm−3 at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.70%, respectively. An inferred critical dry diameter (Dm) is calculated based on the NCCN-obs and aerosol number size distribution assuming homogeneous chemical composition. The inferred cut-off diameters are in the ranges of 190–280, 160–260, 95–180, 65–120 and 50–100 nm at supersaturations of 0.056, 0.083, 0.17, 0.35 and 0.7%, with their mean values 230.1, 198.4, 128.4, 86.4 and 69.2 nm, respectively. Size-resolved activation measurements show that most of the 300 nm particles are activated at the investigated supersaturations, while almost no particles of 30 nm are activated even at the highest supersaturation of 0.72%. The activation ratio increases with increasing supersaturation and particle size. The slopes of the activation curves for ambient aerosols are not as steep as those observed in calibrations with ammonium sulfate suggesting that the observed aerosols is an external mixture of more hygroscopic and hydrophobic particles. The calculated CCN number concentrations (NCCN-calc) based on the size-resolved activation ratio and aerosol number size distribution correlate well with the NCCN-obs, and show an average overestimation of 19%. Sensitivity studies of the CCN closure show that the NCCN at each supersaturation is well predicted with the campaign average of size-resolved activation curves. These results indicate that the aerosol number size distribution is critical in the prediction of possible CCN. The CCN number concentration can be reliably estimated using time-averaged, size-resolved activation efficiencies without accounting for the temporal variations

    Structure of Schlafen13 reveals a new class of tRNA/rRNA- targeting RNase engaged in translational control

    Get PDF
    Cleavage of transfer (t)RNA and ribosomal (r)RNA are critical and conserved steps of translational control for cells to overcome varied environmental stresses. However, enzymes that are responsible for this event have not been fully identified in high eukaryotes. Here, we report a mammalian tRNA/rRNA-targeting endoribonuclease: SLFN13, a member of the Schlafen family. Structural study reveals a unique pseudo-dimeric U-pillow-shaped architecture of the SLFN13 N'-domain that may clamp base-paired RNAs. SLFN13 is able to digest tRNAs and rRNAs in vitro, and the endonucleolytic cleavage dissevers 11 nucleotides from the 3'-terminus of tRNA at the acceptor stem. The cytoplasmically localised SLFN13 inhibits protein synthesis in 293T cells. Moreover, SLFN13 restricts HIV replication in a nucleolytic activity-dependent manner. According to these observations, we term SLFN13 RNase S13. Our study provides insights into the modulation of translational machinery in high eukaryotes, and sheds light on the functional mechanisms of the Schlafen family

    Measurements of the Mass and Full-Width of the ηc\eta_c Meson

    Get PDF
    In a sample of 58 million J/ψJ/\psi events collected with the BES II detector, the process J/ψγηc\psi\to\gamma\eta_c is observed in five different decay channels: γK+Kπ+π\gamma K^+K^-\pi^+\pi^-, γπ+ππ+π\gamma\pi^+\pi^-\pi^+\pi^-, γK±KS0π\gamma K^\pm K^0_S \pi^\mp (with KS0π+πK^0_S\to\pi^+\pi^-), γϕϕ\gamma \phi\phi (with ϕK+K\phi\to K^+K^-) and γppˉ\gamma p\bar{p}. From a combined fit of all five channels, we determine the mass and full-width of ηc\eta_c to be mηc=2977.5±1.0(stat.)±1.2(syst.)m_{\eta_c}=2977.5\pm1.0 ({stat.})\pm1.2 ({syst.}) MeV/c2c^2 and Γηc=17.0±3.7(stat.)±7.4(syst.)\Gamma_{\eta_c} = 17.0\pm3.7 ({stat.})\pm7.4 ({syst.}) MeV/c2c^2.Comment: 9 pages, 2 figures and 4 table. Submitted to Phys. Lett.

    A Measurement of Psi(2S) Resonance Parameters

    Full text link
    Cross sections for e+e- to hadons, pi+pi- J/Psi, and mu+mu- have been measured in the vicinity of the Psi(2S) resonance using the BESII detector operated at the BEPC. The Psi(2S) total width; partial widths to hadrons, pi+pi- J/Psi, muons; and corresponding branching fractions have been determined to be Gamma(total)= (264+-27) keV; Gamma(hadron)= (258+-26) keV, Gamma(mu)= (2.44+-0.21) keV, and Gamma(pi+pi- J/Psi)= (85+-8.7) keV; and Br(hadron)= (97.79+-0.15)%, Br(pi+pi- J/Psi)= (32+-1.4)%, Br(mu)= (0.93+-0.08)%, respectively.Comment: 8 pages, 6 figure
    corecore