107 research outputs found

    Fooling Vision and Language Models Despite Localization and Attention Mechanism

    Full text link
    Adversarial attacks are known to succeed on classifiers, but it has been an open question whether more complex vision systems are vulnerable. In this paper, we study adversarial examples for vision and language models, which incorporate natural language understanding and complex structures such as attention, localization, and modular architectures. In particular, we investigate attacks on a dense captioning model and on two visual question answering (VQA) models. Our evaluation shows that we can generate adversarial examples with a high success rate (i.e., > 90%) for these models. Our work sheds new light on understanding adversarial attacks on vision systems which have a language component and shows that attention, bounding box localization, and compositional internal structures are vulnerable to adversarial attacks. These observations will inform future work towards building effective defenses.Comment: CVPR 201

    Fooling Vision and Language Models Despite Localization and Attention Mechanism

    Get PDF
    Adversarial attacks are known to succeed on classifiers, but it has been an open question whether more complex vision systems are vulnerable. In this paper, we study adversarial examples for vision and language models, which incorporate natural language understanding and complex structures such as attention, localization, and modular architectures. In particular, we investigate attacks on a dense captioning model and on two visual question answering (VQA) models. Our evaluation shows that we can generate adversarial examples with a high success rate (i.e., > 90%) for these models. Our work sheds new light on understanding adversarial attacks on vision systems which have a language component and shows that attention, bounding box localization, and compositional internal structures are vulnerable to adversarial attacks. These observations will inform future work towards building effective defenses.Comment: CVPR 201

    STUDY ON EARTHQUAKE DAMAGE MECHANISM OF AQUEDUCT STRUCTURE BASED ON DIFFERENT BOUNDARY

    Get PDF
    Numerically simulating an infinite domain foundation is an important method for solving structural dynamics problems. This paper introduces several artificial dynamic boundaries commonly used in the study of structural dynamics, and elaborates the theory and methods of the dynamic infinite element method boundary (IEMB) and viscous–spring artificial boundary (VSAB). The capacity of different boundary effects on seismic waves energy absorption is verified by establishing a layered half-space model. An irrigation aqueduct is taken as a research object. The IEMB, VSAB, and fixed boundary (FB) models are established and the Concrete Damaged Plasticity (CDP) constitutive is introduced, which is aimed at studying the dynamic failure mechanism and the rules of damage development to the aqueduct structure during the seismic duration. The results for the IEMB and VSAB show better energy absorption for the incident waves and a better simulation result for the damping effect of the far field foundation than that of the FB. Comparing the maximum displacement response rules of the three boundaries, it is seen that the maximum displacement response values of the VSAB and dynamic IEMB increased by 6%–48% and 9%–35%, respectively, over the FB. The calculation results of the VSAB are similar to that of the IEMB. The difference between the maximum acceleration response values is 2%–17% whereas the difference between the maximum displacement response values is 0.4%–19%. The IEMB studied in this paper provides a theoretical reference for large–scale building boundary treatment in structural dynamics calculations

    Single-case design meta-analyses in education and psychology: a systematic review of methodology

    Get PDF
    Meta-analysis is of increasing importance as this quantitative synthesis technique has the potential to summarize a tremendous amount of research evidence, which can help making evidence-based decisions in policy, practice, and theory. This paper examines the single-case meta-analyses within the Education and Psychology fields. The amount of methodological studies related to the meta-analysis of Single-Case Experimental Designs (SCEDs) is increasing rapidly, especially in these fields. This underscores the necessity of a succinct summary to help methodologists identify areas for further development in Education and Psychology research. It also aids applied researchers and research synthesists in discerning when to use meta-analytic techniques for SCED studies based on criteria such as bias, mean squared error, 95% confidence intervals, Type I error rates, and statistical power. Based on the summary of empirical evidence from 18 reports identified through a systematic search procedure, information related to meta-analytic techniques, data generation and analysis models, design conditions, statistical properties, conditions under which the meta-analytic technique is appropriate, and the study purpose(s) were extracted. The results indicate that three-level hierarchical linear modeling is the most empirically validated SCED meta-analytic technique, and parameter bias is the most prominent statistical property investigated. A large number of primary studies (more than 30) and at least 20 measurement occasions per participant are recommended for usage of SCED meta-analysis in Education and Psychology fields

    Lightweight photovoltaic composite structure on stratospheric airships

    Get PDF
    A semirigid solar array is an efficient energy system on the surface of stratospheric airships for utilizing the solar energy, which we believe that it has succeeded in providing some impressive results for conceptual design. This paper developed a lightweight photovoltaic composite structure (LPCS) according to the characteristics of the stratospheric airship capsule. In order to improve the flexibility of the solar cell, we studied the mechanical properties in the different thicknesses of the honeycomb core for LPCS by FEM software and three-point bending test, and we also launched experiments to measure the temperature difference between upper and lower surfaces of the LPCS test samples under different solar radiation flux conditions. The experimental data were examined to evaluate the mechanical properties and thermal insulation performances of LPCS. Considering the quality of the whole structure, the paper finally comes up with the conclusion of the optimal thickness of the honeycomb core with further detailed descriptions

    The DNA Methylation Status of Wnt and Tgfβ Signals Is a Key Factor on Functional Regulation of Skeletal Muscle Satellite Cell Development

    Get PDF
    DNA methylation is an important form of epigenetic regulation that can regulate the expression of genes and the development of tissues. Muscle satellite cells play an important role in skeletal muscle development and regeneration. Therefore, the DNA methylation status of genes in satellite cells is important in the regulation of the development of skeletal muscle. This study systematically investigated the changes of genome-wide DNA methylation in satellite cells during skeletal muscle development. According to the MeDIP-Seq data, 52,809–123,317 peaks were obtained for each sample, covering 0.70–1.79% of the genome. The number of reads and peaks was highest in the intron regions followed by the CDS regions. A total of 96,609 DMRs were identified between any two time points. Among them 6198 DMRs were annotated into the gene promoter regions, corresponding to 4726 DMGs. By combining the MeDIP-Seq and RNA-Seq data, a total of 202 overlap genes were obtained between DMGs and DEGs. GO and Pathway analysis revealed that the overlap genes were mainly involved in 128 biological processes and 23 pathways. Among the biological processes, terms related to regulation of cell proliferation and Wnt signaling pathway were significantly different. Gene–gene interaction analysis showed that Wnt5a, Wnt9a, and Tgfβ1 were the key nodes in the network. Furthermore, the expression level of Wnt5a, Wnt9a, and Tgfβ1 genes could be influenced by the methylation status of promoter region during skeletal muscle development. These results indicated that the Wnt and Tgfβ signaling pathways may play an important role in functional regulation of satellite cells, and the DNA methylation status of Wnt and Tgfβ signals is a key regulatory factor during skeletal muscle development. This study provided new insights into the effects of genome-wide methylation on the function of satellite cells

    Genome-Wide Association Study Reveals Candidate Genes for Growth Relevant Traits in Pigs

    Get PDF
    Improvement of the growth rate is a challenge in the pig industry, the Average Daily Gain (ADG) and Days (AGE) to 100 kg are directly related to growth performance. We performed genome-wide association study (GWAS) and genetic parameters estimation for ADG and AGE using the genomic and phonemic from four breed (Duroc, Yorkshire, Landrace, and Pietrain) populations. All analyses were performed by a multi-loci GWAS model, FarmCPU. The GWAS results of all four breeds indicate that five genome-wide significant SNPs were associated with ADG, and the nearby genomic regions explained 4.08% of the genetic variance and 1.90% of the phenotypic variance, respectively. For AGE, six genome-wide significant SNPs were detected, and the nearby genomic regions explained 8.09% of the genetic variance and 3.52% of phenotypic variance, respectively. In total, nine candidate genes were identified to be associated with growth and metabolism. Among them, TRIB3 was reported to associate with pig growth, GRP, TTR, CNR1, GLP1R, BRD2, HCRTR2, SEC11C, and ssc-mir-122 were reported to associate with growth traits in human and mouse. The newly detected candidate genes will advance the understanding of growth related traits and the identification of the novel variants will suggest a potential use in pig genomic breeding programs

    The histone deacetylase inhibitor tubacin mitigates endothelial dysfunction by up-regulating the expression of endothelial nitric oxide synthase.

    Get PDF
    Endothelial nitric oxide (NO) synthase (eNOS) plays a critical role in the maintenance of blood vessel homeostasis. Recent findings suggest that cytoskeletal dynamics play an essential role in regulating eNOS expression and activation. Here, we sought to test whether modulation of cytoskeletal dynamics through pharmacological regulation of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation affects eNOS expression and endothelial function in vitro and in vivo.Wefound that tubulin acetylation inducer (tubacin), a compound that appears to selectively inhibit HDAC6 activity, dramatically increased eNOS expression in several different endothelial cell lines, as determined by both immunoblotting and NO production assays. Mechanistically, we found that these effects were not mediated by tubacin\u27s inhibitory effect on HDAC6 activity, but rather were due to its ability to stabilize eNOS mRNA transcripts. Consistent with these findings, tubacin also inhibited proinflammatory cytokine-induced degradation of eNOS transcripts and impairment of endothelium-dependent relaxation in the mouse aorta. Furthermore, we found that tubacin-induced up-regulation in eNOS expression in vivo is associated with improved endothelial function in diabetic db/db mice and with a marked attenuation of ischemic brain injury in a murine stroke model. Our findings indicate that tubacin exhibits potent eNOS-inducing effects and suggest that this compound might be useful for the prevention or management of endothelial dysfunction-associated cardiovascular diseases. © 2019 Chen et al

    Characterization analysis and polymorphism detection of the porcine Myd88 gene

    Get PDF
    The myeloid differentiation primary response protein 88 (Myd88) is an essential adaptor protein, which mediates in all Toll-like receptor (TLR) members signal transduction, except for TLR3. In this study, the 4464 bp genomic sequence of porcine Myd88 was first isolated, whereupon tissue distribution, chromosome mapping and single nucleotide polymorphism (SNP) were analyzed. Our results revealed that porcine Myd88 gene, which was located at chromosome 13 linked with marker S0288 (distance = 40 cR; LOD = 8.66), was widely expressed in all the examined tissues. There were 16 potential SNPs in the isolated genome fragment. SNP 797T/C in the first intron was studied, with no significant association being found between the genotype and immune traits in pigs (p > 0.05). The porcine Myd88 protein contained both the death domain (DD) and the Toll/IL-1 receptor domain (TIR). Leu residues, essential for its structure, were the most abundant encountered in the DD. The TIR contained two conserved motifs which may play important roles in the Myd88 function

    Regulation of Wnt Singaling Pathway by Poly (ADP-Ribose) Glycohydrolase (PARG) Silencing Suppresses Lung Cancer in Mice Induced by Benzo(a)pyrene Inhalation Exposure

    Get PDF
    Benzo(a)pyrene (BaP) is a polycyclic aromatic hydrocarbon that specifically causes cancer and is widely distributed in the environment. Poly (ADP-ribosylation), as a key post-translational modification in BaP-induced carcinogenesis, is mainly catalyzed by poly (ADP-ribose) glycohydrolase (PARG) in eukaryotic organisms. Previously, it is found that PARG silencing can counteract BaP-induced carcinogenesis in vitro, but the mechanism remained unclear. In this study, we further examined this process in vivo by using heterozygous PARG knockout mice (PARG+/−). Wild-type and PARG+/− mice were individually treated with 0 or 10 μg/m3 BaP for 90 or 180 days by dynamic inhalation exposure. Pathological analysis of lung tissues showed that, with extended exposure time, carcinogenesis and injury in the lungs of WT mice was progressively worse; however, the injury was minimal and carcinogenesis was not detected in the lungs of PARG+/− mice. These results indicate that PARG gene silencing protects mice against lung cancer induced by BaP inhalation exposure. Furthermore, as the exposure time was extended, the protein phosphorylation level was down-regulated in WT mice, but up-regulated in PARG+/− mice. The relative expression of Wnt2b and Wnt5b mRNA in WT mice were significantly higher than those in the control group, but there was no significant difference in PARG+/− mice. Meanwhile, the relative expression of Wnt2b and Wnt5b proteins, as assessed by immunohistochemistry and Western blot analysis, was significantly up-regulated by BaP in WT mice; while in PARG+/− mice it was not statistically affected. Our work provides initial evidence that PARG silencing suppresses BaP induced lung cancer and stabilizes the expression of Wnt ligands, PARG gene and Wnt ligands may provide new options for the diagnosis and treatment of lung cancer
    corecore