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RESEARCH ARTICLE

Data driven polypharmacological drug 
design for lung cancer: analyses for targeting 
ALK, MET, and EGFR
Dilip Narayanan†, Osman A. B. S. M. Gani†, Franz X. E. Gruber^ and Richard A. Engh*

Abstract 

Drug design of protein kinase inhibitors is now greatly enabled by thousands of publicly available X-ray structures, 
extensive ligand binding data, and optimized scaffolds coming off patent. The extensive data begin to enable design 
against a spectrum of targets (polypharmacology); however, the data also reveal heterogeneities of structure, subtle-
ties of chemical interactions, and apparent inconsistencies between diverse data types. As a result, incorporation of all 
relevant data requires expert choices to combine computational and informatics methods, along with human insight. 
Here we consider polypharmacological targeting of protein kinases ALK, MET, and EGFR (and its drug resistant mutant 
T790M) in non small cell lung cancer as an example. Both EGFR and ALK represent sources of primary oncogenic 
lesions, while drug resistance arises from MET amplification and EGFR mutation. A drug which inhibits these targets 
will expand relevant patient populations and forestall drug resistance. Crizotinib co-targets ALK and MET. Analysis of 
the crystal structures reveals few shared interaction types, highlighting proton-arene and key CH–O hydrogen bond-
ing interactions. These are not typically encoded into molecular mechanics force fields. Cheminformatics analyses 
of binding data show EGFR to be dissimilar to ALK and MET, but its structure shows how it may be co-targeted with 
the addition of a covalent trap. This suggests a strategy for the design of a focussed chemical library based on a 
pan-kinome scaffold. Tests of model compounds show these to be compatible with the goal of ALK, MET, and EGFR 
polypharmacology.
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Background
The importance and proven druggability of protein 
kinases as targets in cancer [1, 2], inflammation [3], and 
other disease areas have transformed antikinase drug 
discovery into an information driven research area of 
unprecedented scale [4]. Public and proprietary data-
bases contain binding data for hundreds of thousands 
of active compounds [5]. Crystal structures are publicly 
available for some 3000 protein kinase inhibitor com-
plexes in the Protein Database (www.rcsb.org) [6]. This 
data begins to enable “polypharmacological” targeting of 

multiple kinases [7–9], which may more effectively mod-
ify network behavior [10], or forestall drug resistance [11, 
12], or provide broader applicability against heterogene-
ous cancers or larger patient groups. Such approaches 
[13] may involve “retargeting” via modification of known 
compounds, or simply “repurposing” known com-
pounds to new applications when target profiles are suit-
able. Practical approaches to polypharmacological design 
include both experimental and computational methods 
[14–18]. There is however no single strategic approach 
to modify such starting compounds to achieve the final 
selectivity profile; this depends on the availability, iden-
tification and understanding of the essential selectivity 
determinants of the relevant targets, as we examine with 
example of this paper.

Non-small-cell lung cancer (NSCLC) represents a col-
lection of diverse molecular pathologies. Most types are 
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relatively insensitive to chemotherapy, but the identifi-
cation of genomic abnormalities in subpopulations of 
NSCLC patients [19–22] have led to the development 
of protein kinase inhibitors against EGFR [23, 24] (gefi-
tinib, 2003; erlotinib, 2004; afatinib, 2013) and ALK (cri-
zotinib, 2011; ceritinib, 2014; alectinib, 2015), see Fig. 1. 
These inhibitors specifically target either EGFR or ALK, 
but not both; cross-reactive inhibitors are under investi-
gation however [25]. Analogous to the results of imatinib 
and ABL inhibition as therapy for CML, treatment with 
gefitinib and erlotinib is associated with acquired resist-
ance [26]. Unlike ABL inhibition, resistance development 
to EGFR inhibitors seems universal. The most common 
resistance mechanism is a secondary mutation of the 
gatekeeper residue (for EGFR, predominantly T790M); 
afatinib appears less [27] but not completely [28] insensi-
tive to this mutation. Additional mechanisms of acquired 
resistance include the amplification of MET [29], HGF 
[30], or HER2 [31]. The universal appearance of drug 
resistance via diverse mechanisms following EGFR inhi-
bition therapy has generated widespread interest in poly-
pharmacological or combinatorial treatment strategies 
[32–34]. In this paper we examine the potential of polyp-
harmacological targeting EGFR, ALK, and MET.

As is typical for protein kinase inhibitors, compounds 
known to inhibit ALK, MET, and EGFR most potently 
bind at the ATP site, where they are anchored to the 
interdomain hinge via one or more hydrogen bonds 
[35]. Together, they represent a small subset of the 
known scaffolds for hinge/ATP site binders [36], which 
are already a restricted set [37] compared to proposed 
extents of possible scaffold diversity [38]. The EGFR 

inhibitor lapatinib was one of the first nearly mono-
specific kinase inhibitors [39]; others may have much 
broader selectivity profiles [40]. Knowledge of the deter-
minants of selectivity for specific protein kinases or 
subfamilies [41, 42] assists target specific or polyphar-
macological drug design. These include the “gatekeeper” 
residue at the hinge, and infrequent occurrences of 
unique residues, such as glycine [43] or cysteine [44, 45]. 
The ongoing expansion of public [40, 46–49] and pro-
prietary [50] target-ligand binding data begins to enable 
“machine learning” prediction of target inhibition pro-
files [51–56]. Such methods, similar to the more com-
mon structure based methods [57, 58], generally do not 
allow precise (e.g. binding constant error <10-fold) pre-
diction of binding properties of individual compound-
target interactions, but they do provide guidance to 
focus efforts on compound classes or libraries with the 
best chances for success [59–64].

In addition to the currently approved drugs and known 
inhibitors, many crystal structures are available to sup-
port drug design against NSCLC targets [6]. For EGFR, 
ALK, and MET, truncated kinase domain structures have 
been determined many times, uncomplexed, in com-
plexes with ATP, ATP analogs, and inhibitors, including 
mutants and truncation variants. These structures show 
considerable diversity of active and inactive conforma-
tions [11, 13], and increasingly enable sophisticated drug 
design approaches. The target EGFR has become the 
primary example for targeting cysteine residues for irre-
versible inhibition [44, 45, 65] and, along with ABL, for 
the design of broadened selectivity profiles to overcome 
or forestall drug resistance [66]. A growing catalog of 

Fig. 1 Overview of current molecular targets in advanced/metastatic non-small-cell lung cancer (NSCLC). Protein kinase inhibitors for NSCLC 
therapy, either approved or in advanced clinical trials, are shown in green boxes; antibodies against cytokine targets HGF asnd VEGF are gray. EGFR, 
MET and ALK are labeled with blue circles
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resistance mutants appearing in ALK [67–69] and MET 
also belong to the set of targets to be considered in gen-
eral polypharmacological targeting strategies against 
NSCLC [70–78].

In this paper, we examine combinations of structure, 
binding, and target validation data to suggest a strategy 
for polypharmacological targeting of ALK, MET, and 
EGFR. We use cheminformatics methods to analyse the 
similarities of the targets. Inhibitor binding data shows a 
high degree of correlation between ALK and MET with 
respect to inhibition profiles, but also an essential dis-
similarity with EGFR. The drug resistant mutant EGFR-
T790M is intermediate between the two groups. We 
compare crystal structures of ALK and MET, consider-
ing especially the cross-inhibitory compound crizotinib, 
in an attempt to identify the structural origins of the 
similarities. Despite the dissimilarity of EGFR, the avail-
ability of a cysteine residue in the ATP pocket provides 
an orthogonal approach for polypharmacological opti-
mization: the ALK-MET similarity may be exploited for 
optimization, while the addition of a covalent trap to 
inhibitors may add effective EGFR inhibition to the pro-
file. Finally, we test compounds synthesized with these 
properties to verify the approach.

Results and discussion
Cheminformatics show similarities of ALK and MET, 
dissimilarity of EGFR, and intermediate similarity of EGFR 
mutant T790M
Several measures are available to evaluate the simi-
larities of kinase drug targets [15, 46, 79–82], including 
sequence, structure, and inhibitor properties. For drug 
discovery purposes, experimental binding data regarding 
cross-reactivity of inhibitors may be the most relevant, 
although this data may be generated in different ways, 
with diversity arising from choice of binding or activity 
assays, conditions, target protein form, etc. Significant 
discrepancies between assay formats are to be expected 
[80, 83, 84] which are more critically reflected in dispari-
ties between in vitro measurement conditions and their 
applicability in vivo. Based on single concentration meas-
urement data from Ambit BioSciences, including esti-
mated IC50 values for the binding of >20,000 compounds 
to 300–400 protein kinases, researchers at Bristol-Myers 
Squibb evaluated inhibitor selectivity profiles with an 
“activity homology” (AH) score [80] (see “Methods”). By 
this measure, ALK and MET are the most similar of the 
kinases considered in this manuscript, while EGFR is dis-
tinctly different (Fig. 2). Of the 400 protein kinases in the 

Fig. 2 The “activity homology” (AH) similarity measure [80] as applied to ALK, MET, and EGFR. a Fractions of the sets of tight binding compounds 
of a reference PK target that also tighly bind to the tested PK are plotted for the ca 400 PKs of the test set. The curves are color coded according to 
the reference PK “A”: black for ALK, red for Met, blue for EGFR, and yellow for the drug resistant mutant EGFR-(L858R, T790M), which is abbreviated 
EGFR-LR/TM on the plot. The PKs of the test set are ordered according to the AH with ALK. Thus, Met-M1250T has the highest ALK AH (black curve) of 
the three Met variants (45%), EGFR is low (<5%), while EGFR-(L858R, T790M) is relatively high (30%). RON has the highest AH to MET, while TAO1 has 
the highest AH with EGFR-LR/TM. The peaks with high homology to EGFR marked with an asterisk are EGFR mutants other than EGFR-LR/TM, and 
have high AH similarity to EGFR (but not EGFR-LR/TM). b The same data, shown as a heirarchically clustered heat map. The mutant labelled L858RT 
represents the EGFR-(L858R, T790M) mutant, and is more similar to Alk and Met than to the other EGFR forms
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test set, some 80 kinases are more similar to ALK than 
MET, including the gatekeeper mutant M1250T of MET 
(approximately at position 50 of the 400 kinases). About 
35% of the potent ALK inhibitors are shared with the 
MET inhibitor set (and about 43% with MET-M1250T). 
Less than 5% of the ALK inhibitors bind potently to 
EGFR and its mutants, with the notable exception of the 
double mutant EGFR-(L858R, T790M). This combination 
of the cancer primary mutation L858R and drug resist-
ance gatekeeper mutation T790M is potently inhibited by 
30% of the ALK inhibitors. (Figure 2 shows ALK4 as simi-
lar to EGFR, sensitive to over 50% of the EGFR inhibitors. 
This kinase “Activin-Like receptor Kinase” belongs to the 
Tyrosine Kinase Like (TKL) subfamily of the kinome, and 
is not related to ALK “Anaplastic Lymphoma Kinase” 
studied in this work).

A related measure of similarity that also uses inhibitor 
binding data is the correlations of inhibitor binding pro-
files between pairs of kinases. Highly correlated targets 
share similar sensitivities to changes in the inhibitors. 
Unlike the “activity homology” described above, cor-
relation compares the pattern of variation of inhibition 
strengths, and not the absolute values. Thus, two kinases 

may have highly correlated inhibition profiles even if the 
inhibition pattern is significantly weaker for one kinase. 
This may occur, for example, if the overall shapes of the 
inhibitor binding sites are similar, but one of the kinases 
may lack one important binding feature. For drug polyp-
harmacology design purposes, it may be advantageous to 
enhance recognition of correlated sensitivities to ligand 
variation. Using the binding data of the Ambit study of 
72 inhibitors and their interactions with 442 kinases 
[40], correlation analysis highlights the similarity of ALK 
and MET, and the dissimilarity of EGFR (Fig.  3). The 
inhibitor set of the study shows a large number of pro-
tein kinases, widely distributed across the kinome, with 
moderate similarity to ALK. The kinases with the most 
correlated inhibition profiles are, like ALK, tyrosine 
kinases, and include the closely related LTK, INSR, IRR 
and IGF1R kinases, but also FAK, PYK2, FER, FES, MER, 
and AXL. MET is only moderately correlated, and EGFR 
has low correlation. Indeed, very few kinases are corre-
lated with EGFR; of the test panel, only HER4 and HER2 
are strongly correlated, while HER3, a few TKs, and the 
less related RIPK2 and GAK kinases show moderate cor-
relation similarity.

Fig. 3 Correlations of inhibition profiles of the Ambit 2011 kinase profiling dataset [40]. Disk sizes and colors (red 100%, magenta 80%, blue 50%, 
green 20%) show the correlations of inhibition profiles of individual PKs with that of the PK of interest. a Correlations with ALK. b Correlations with 
EGFR
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A third measure of similarity is principle component 
analysis [85, 86] of multiple target-multiple inhibitor 
binding matrices (see “Methods”). Applied to the 2011 
Ambit study [40], the protein kinase targets form a broad 
cluster, extended along the dimension of the first princi-
pal component (Fig. 4). Considering the PCA axes to rep-
resent “pseudo-inhibitors” as described above, there is a 
roughly Gaussian distribution for a majority of kinases 
around a value representing weak to moderate binding 
to “pseudo-inhibitor 1”, with some kinases in a skewed 
distribution toward tight binding. In order to maximize 
the variance in the first coordinate, the PCA method has 
constructed a “pseudo-inhibitor” that combines tight 
binding for the largest number of kinases possible (the 
skewed distribution). This favors the selection of targets 
which may be inhibited tightly by many inhibitors in the 
dataset, i.e. “generic” targets with high propensity for 
inhibition. ALK, MET, and EGFR are near the middle of 
the distribution in PC coordinate #1. The second PCA 
dimension similarly spreads the kinases into a moderately 
inhibited cluster, skewed toward a smaller set of kinases 
that are tightly inhibited; here,this includes EGFR and 
several of its variants, but not the two T790M mutants. 
The third PC dimension clearly separates EGFR and all 
of its mutants from the rest of the kinases, including 
ALK and MET. Thus, the activity homology (AH) data, 
the distributions of inhibitor correlation data on kinome 
plots, and PCA analysis of the inhibition data all show 
the statistical similarity of ALK and MET, the dissimilar-
ity of EGFR, and an intermediate similarity for EGFR-
T790M. The PCA analysis also identifies the inhibitors 

responsible for the clustering of EGFR and mutants away 
from the other kinases (see discussion below).

Heterogeneity of crystal structures obscures 
polypharmacology prediction
Because the structures of the target proteins determine 
the binding strengths of the ligands, it is natural to expect 
crystal structures to reveal target similarities and to aid 
the formulation of polypharmacological targeting strate-
gies. Accordingly, considering the previous section, the 
ALK and MET ATP binding sites would be expected 
to appear similar to each other than to EGFR, with the 
EGFR-T790M mutants somewhere in between. How-
ever, examination of the crystal structures available for 
these targets reveals more the difficulties of structure 
based prediction of comparative binding strengths than 
mechanisms for doing so. This is due in large part to the 
structural flexibility and plasticity of proteins, leading 
to signficant ligand induced structural changes, but also 
derives from structural distributions that are affected 
by the crystallization constructs, conditions and crystal 
packing arrangements. Considering all structures avail-
able for the targets illustrates this.

The ALK structures are most homogeneous set; they 
superimpose with an average Cα RMS of 0.11Å, have the 
same essential crystal packing arrangement and, with one 
exception (4FNY), share an active “DFG-in” conforma-
tion of the activation loop (with the DFG phenylalanine 
in its hydrophobic spine position [87]). The activation 
loop (A-loop) adopts a unique conformation, however: 
The A-loop phosphorylation site Tyr1278 is anchored 
below the “C-helix” on the side opposite to the ATP 
pocket, analogous to active TK structures first observed 
for insulin receptor kinase [88, 89], but in ALK with a 
unique alpha-helical secondary structure. The excep-
tional ALK DFG-out conformation structure shares the 
crystal packing arrangement of the other structures, but 
at a lower symmetry, with the asymmetric unit compris-
ing what was a crystallographic symmetry related pair in 
the other structures.

The greatest number of structures is available for EGFR 
(more than 100 PDB entries when including disease-
related and other mutations). The largest group of these 
structures share an active conformation, whereby pairs 
of monomers related by a crystallographic three-fold 
symmetry operation (space group I23) form an “asym-
metric dimer” that represents a structural model of the 
active form [90]. Other EGFR structures show variations 
in C-helix positions (in = active, out = inactive); one set 
of structures (e.g. 2JIU) has an asymmetric unit consist-
ing of a dimer with an apparently active geometry. There 
are no observations of a “DFG-out” geometry among 
the EGFR structures. However, there are two clusters of 

Fig. 4 PCA transformation of the Ambit 2011 dataset, highlighting 
Alk, Met, and EGFR kinases. Of the first three dimensions of the prin-
cipal component transformation of the dataset, prinicpal component 
#3 clearly distinguishes EGFR and variants from the other kinases, 
while ALK, MET, and EGFR all are similar with respect to PC #1. PC #2 
distinguishes the T790M mutants from the other EGFR forms
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conformations: one with the usual active DFG-in con-
formation that places the DFG Phe into the hydrophobic 
spine, and another conformation with altered main chain 
angles and position of the activation loop.

The MET structures show the greatest conformational 
diversity. Of the three kinases studied here, MET has 
crystallized in the largest number of space groups, and 
the N- and C-lobe “open-closed” variations are largest. 
The DFG states observed include DFG-in, DFG-out, and 
intermediate states. The C-helix is seen in both “in” and 
“out” geometries. The activation loop conformations are 
highly varied, including many that could not be resolved 
in the crystal structures. Many of the variations also 
involve inhibitor interactions, and one common inhibi-
tor binding surface is quite conserved as aromatic, but 
is seen formed variously by three different residues with 
four or more distinct geometries.

Do crizotinib co‑crystal structures explain cross‑reactivity 
and reveal ALK and MET similarities?
Even if flexibility prevents reliable prediction, it seems 
reasonable to expect that the structures of cross-reactive 
inhibitors in their different targets would identify the 
basis for the cross-reactivity. This would enable struc-
ture based design of e.g. an inhibitor library focussed 
on the likelihood of cross-reactivity. For ALK and MET 
cross reactivity, the low nanomolar inhibition of both 

ALK and MET by crizotinib is likely the clearest and 
best known measure of similarity between the two tar-
gets [91] Besides ALK (3  nM) and MET (2  nM), crizo-
tinib also shows single digit nM binding (KD) to protein 
kinases ROS1 (4 nM), MER (4 nM), EPHB6 (6 nM), and 
AXL (8  nM) [40], depending of course on assay condi-
tions. Crystal structures of crizotinib in protein kinases 
in the PDB comprise 2WGJ (c-MET KD), 2XP2 (ALK-
KD), 2YFX (L1196M), 3ZBF (ROS1), 4ANQ (G1269A), 
4ANS (L1196M, G1269A), and 4C9W (NUDT1). (The 
S-stereoisomer of crizotinib is co-crystallized with 
NUDT1 also). Superposition of co-crystal structures of 
crizotinib with ALK (2XP2 [92]) and MET (2WGJ [91]) 
reveals more how the binding energies that correspond 
to the highly selective and nanomolar ALK and MET 
co-inhibition depend on interactions that are not readily 
identified with standard structural biology or bioinfor-
matic methods (Fig.  5). Interacting side chains differ at 
many key sites, including: the residues that sandwich the 
adenine binding site (MET vs. Leu from the C-lobe, and 
Leu vs. Ile from the glycine-rich loop), the gatekeeper+2 
(the site two residues C-terminal to the gatekeeper resi-
due) aromatic/hydrophobic side chain at the hinge (Tyr 
vs Leu), and a key pi–pi stacking interaction with the 
activation loop phosphorylation site tyrosine that is 
observed only in the MET structure. Amino acid type 
specific crizotinib interactions that are shared between 

Fig. 5 Superposition of structures of crizotinib in complexes with ALK (PDB: 2XP2; orange/brick) and MET (PDB: 2WGJ, violet/indigo). Side chains 
within a contact distance of 4 Å are shown as sticks, while main chain hydrogen bonding contact atoms are shown as small spheres. A dashed line 
indicates the approximate position of the disordered glycine-rich loop of Alk. The side chains of the activation loop phosphorylation sites are widely 
separated, with Tyr-1230 of MET in a pi–pi interaction with crizotinib, and Tyr-1278 of ALK anchored away from the ATP pocket by a helical confor-
mation of the activation loop. The structure of crizotinib in complex with ALK mutant L1196M is similar to 2XP2, excepting the gatekeeper mutation
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ALK and MET comprise the gatekeeper (Leu), the C-ter-
minal ATP site anchor of the glycine-rich loop (Val), an 
alanine residue two positions N-terminal to the active 
site lysine, and a pyrazole–proton interaction at a gate-
keeper+6 glycine residue. The importance of the gate-
keeper and pyrazole-glycine interactions are highlighted 
by the occurrence of resistance via mutation at these sites 
[93]. While the shared interactions are consistent with 
the observed co-inhibition, these residues are highly con-
served in the kinome, so that these interactions are not 
predictive of the selectivity of the co-inhibition. Other 
shared but non-residue specific interactions include the 
anchoring hydrogen bonds at the hinge, and a key inter-
action with a main chain carbonyl group. The latter forms 
a CH–O hydrogen bond from an aromatic ring hydrogen 
that has been polarized by the fluorine substituent at the 
adjacent site on the ring [92]. The pi–pi stacking interac-
tion with Tyr1230 appears important for MET inhibition, 
but no comparable interaction is seen in the ALK struc-
ture. This difference was proposed to account in part for 
the tighter binding of crizotinib to MET vs ALK, along 
with differences of the backbone peptide orientation at 
G1269 (ALK) and A1221 (MET) [92]. Crizotinib binding 
to the MET mutant Y1230C is weakened 15-fold in a cel-
lular assay [94], supporting the view that the pi stacking 
interaction in important in  vivo. Taken together, these 
details indicate that the crystal structures would not have 
allowed the prediction of high affinity cross-reactivity, 
but that prior knowledge of the cross-reactivity enables 
the study of the structures to identify the key candidate 
interactions responsible for it.

Do the crystal structures in general reveal 
polypharmacological potential?
The importance of the CH–O, CH-arene, and arene–
arene interactions for the total binding energetics (and, 
ultimately, therapeutic properties) of crizotinib is not 
entirely clear, but they highlight the scoring and search-
ing dilemma that prevents in silico methods to predict 
ligand binding properties from target structures: The 
level of theory and concomitant CPU power required for 
computation of such binding features to provide effec-
tive scoring prevents their prediction a priori if bind-
ing geometries are unknown. (For example, the strength 
of the pyrazole–proton interaction described above 
depends on the electron-richness of the pyrazole and 
on energetic penalties of rotation away from the energy 
minimum, phenomena requiring quantum mechan-
ics level calculations for evaluation [92]). Comparisons 
across all PDB structures provide some measure of the 
range of structural variability, but do not enable the cal-
culation of binding energies, while inhibitor binding 
studies provide averaged binding energies averaged over 

structural distributions in the assay environmental con-
ditions. In the PDB, there are currently 51 MET and 36 
ALK structures; of these, only 3 MET structures are of 
the phosphorylated protein. For crizotinib, both MET 
and ALK were nonphosphorylated forms of truncated 
kinase domains, and the co-crystal structures showed 
inactive geometries. (MET has significant residual activ-
ity when unphosphorylated, and is activated 160-fold 
upon autophosphorylation [94]). For receptor TKs, phos-
phorylation often occurs autocatalytically in trans as a 
consquence of ligand binding to extracellular domains 
and oligomerization [95]. The mechanism of activation 
of tyrosine kinases by phosphorylation of the activation 
loop is usually considered to involve destabilization of 
possibly rigid inactive states of the kinase.

Oncogenic activation via mutation or fusion often 
disrupts inactivating geometries. Partially as a result of 
this, and partially due to their inherent plasticity, pro-
tein kinase cancer drug target structures are highly flex-
ible; prioritization for in silico drug discovery purposes 
may be difficult [96]. Superposition of ALK and MET 
structures (Fig. 6) from the PDB illustrate this. The MET 
structures show great diversity in conformations of the 
activation loop, and the tyrosine that is involved in pi–pi 
stacking interactions with crizotinib (Tyr1035) is found 
distributed across the entire space accessible to the acti-
vation loop (Fig.  6a). The structures for ALK are more 
homogeneous, and cluster into one major group and 
one minor group. Most ALK structures show a helical 
conformation for the activation loop following the DFG 
sequence, anchored to the C-helix by two arginine resi-
dues flanking the conserved glutamic acid of the C-helix, 
and by hydrophobic and aromatic interactions involving 
Tyr1278 (Fig. 6a). For the exceptional geometry, the acti-
vation loop retains a helical conformation and salt bridge 
interactions with helix C, but the Tyr1278 anchoring is 
lost, and the helix is rotated away from the C-helix. Pre-
diction of ATP site binding will usually depend critically 
on the choice of the “correct” target structure (Fig.  6b), 
but if the “correct” structure is induced by inhibitor, it 
will obviously not be available for a priori searches. Sta-
tistical analysis of the protein kinases currently in the 
PDB provides an excellent illustration of the structural 
diversity currently observed to date [97]. PLS analy-
sis [98] to identify the geometric measures that most 
strongly differentiate active and inactive geometries [97], 
and cluster crystal structures accordingly, shows how 
the structures for ALK, MET, and EGFR are distributed 
between apparent activity states. The MET structures are 
mostly inactive and broadly distributed, the ALK struc-
tures are mostly active (or close to it), and the EGFR 
structures are both active and inactive (Fig. 6c). For ALK, 
the position on the horizontal axis (with the coordinate 
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definition dominated by DFG related geometries) does 
not clearly mark them as active. However, the vertical 
axis and its inclusion of helix C position parameters, cou-
pled with “nearly active” DFG geometries, clusters ALK 
together with the active group.

A closer look at the structural diversity reveals several 
interesting phenomena. One is the clustering of aromatic 
side chains at the ATP pocket (Fig. 7). Many of the MET 
structures show nearly identical positions for Tyr1230, 
similar to the geometry seen in the crizotinib complex. 
These are compatible with DFG-in geometries. Stand-
ard DFG-out geometries do not allow Tyr1230 to occupy 
that space, but replace it nearly exactly with Phe1223 of 
DFG, in place for inhibitor packing interactions. As a 
third alternative, this space may be occupied by the aro-
matic Phe1089 from the glycine-rich loop, represented 
by a small cluster of three structures in this superposi-
tion. There is also a unique positions for the DFG and 
glycine-rich loop positions. Inhibitor types are associated 

with the clusters of arenes at this site (Fig. 7b). Interac-
tions with the DFG Phe in the DFG-out configurations 
are dominated by single aromatic rings from Type II 
inhibitors that occupy the deep pocket (vacated by the 
DFG-out Phe). Interactions with Tyr1230 of the activa-
tion loop involve a small variety of arenes: several halo-
genated or nitrated phenyl groups and a larger number 
of fused 5- and 6-membered heteroatomic aromatic ring 
systems, mostly in the same space. (One structure is dis-
placed (3ZZE), but pi interactions may be maintained 
via resonance across nitrogen and amide bond linkages). 
One structure is unique: the complex with ARQ197 
(PDBID: 3RHK [99]) shows a fused three-ring system 
sandwiched between Phe1089 and Phe1223 in unique 
positions. Finally, significant structural variation may be 
observed within a single crystal structure. The two mon-
omers of the MET kinase domain in a crystal structure of 
a complex with a pyrimidone containing type II inhibi-
tor (PDBID: 3EFJ [100]) shows that group to interact with 

Fig. 6 Structural variabilities and activation states of the targets. a A cartoon style plot showing the activation loops of representative crystal struc-
tures for MET (green PDBIDs 1R0P, 3DKC, 3F66, 3L8V, 3Q6W and 3RHK) and ALK (red both monomers from PDBID 4CNH) shows the diversity of posi-
tions for the tyrosine side chain suitable for crizotinib pi-stacking interactions (MET: Tyr1230, aligned position in ALK: Tyr1278). The ALK structures are 
two monomers from a single PDB structure that show different activation loop geometries. b Different shapes of the ATP binding sites arise from 
activation loop structural differences, among other differences. Here, structures for crizotinib-ALK (red PDBID: 2YFX), a pyrido-pyrimidine inhibitor 
and MET (violet PDBID: 4GG7), and ARQ197-MET (turquoise PDBID: 3RHK) are superimposed. c Distributions of activation relevant geometries for PDB 
structures of ALK, MET, and EGFR. The axes represent the first two dimensions of a PLS analysis to identify the geometric parameters most relevant 
to identify active and inactive states (see text)
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the protein via pi–pi stacking interactions, whereby the 
interacting partner is the DFG Phe1223 for one mono-
mer, but is the glycine-rich loop Phe1089 for the other 
(Fig. 7c).

Study of the variabilities shown by the crystal struc-
tures reveal physiologically relevant properties of the 
individual proteins and ligands studied, but their inter-
pretation with respect to therapeutic properties requires 
much more experimental information and careful analy-
ses of the differing environments in crystallo and in vivo. 
For protein kinases, crystal structures are commonly 
truncated single domain proteins with specific phos-
phorylation states, and the structures of flexible ele-
ments such as the activation loop may be determined 
by crystal packing interactions. In contrast, the disease 
targets are usually larger, multidomain proteins, often in 
larger assemblies, and with heterogeneities of chemical 

modifications and cellular environments. Highly potent 
inhibitors can compete with many of these effects, such 
that co-crystal structures generally reveal the key target-
inhibitor interactions faithfully. But the crystal structures 
may also capture both the protein and ligand in states 
that are unimportant for therapeutic properties.

One uncertainty for protein kinase co-crystallography 
is the activation state of the enzyme. Crizotinib binding 
in MET described above involves pi–pi stacking with 
Tyr1230. However, the three activated MET structures 
in the PDB, phosphorylated on Tyr1235, show an activa-
tion loop structure with Tyr1230 far removed from the 
ATP binding pocket. The apparent structural homoge-
neity of ALK is also deceptive. The oncologically rele-
vant forms of ALK are most commonly fusion proteins 
[76, 101] that remove membrane attachment and render 
ALK constitutively active. Dimer- or oligomerization is 

Fig. 7 Variability of aromatic side chain positions. a A view (from the N-lobe side of the ATP pocket) showing clustering of aromatic amino acids. 
In MET structures, Phe1223 (green) of the “DFG” motif clusters into the DFG-in or DFG-out positions, with an intermediate position also represented. 
Phe1089 (cyan) from the glycine-rich loop of MET usually clusters near the tip of an extended glycine-rich loop, but is also seen in several structures 
to occupy nearly exactly the position adopted by the DFG Phe1223 in protein DFG-out configurations. Tyr1230, when interacting with inhibitors, 
forms a tight cluster at a single position, but is absent when Phe1089 or Phe1223 occupies an adjacent site. The PDBID codes for these structures 
are 2RFN, 2RFS, 2WD1, 2WGJ, 2WKM, 3A4P, 3C1X, 3CCN, 3CD8, 3CE3, 3CTH, 3CTJ, 3DKF, 3DKG, 3EFK, 3F66, 3F82, 3I5N, 3L8V, 3LQ8, 3Q6W, 3QTI, 3R7O, 
3RHK, 3U6H, 3U6I, 3ZXZ, 3ZZE, 4AOI, 4AP7, 4DEG, 4DEH, 4DEI, 4EEV, 4GG5, 4GG7, and 2YFX. b Inhibitor types cluster according to the clustering of 
the target structures. Generally, type II inhibitors (cyan), with some diversity of chemical scaffolds, often bind in part via packing against Phe1223 in 
its typical DFG-out position, while type I inhibitors (violet) often bind via pi–pi stacking interactions against Tyr1230. The exceptional geometry of 
both protein and inhibitor for Arq197 (yellow) is apparent. The PDBID codes for these structures are: 2RFN, 2RFS, 2WD1, 2WGJ, 2WKM, 3A4P, 3C1X, 
3CCN, 3CD8, 3CE3, 3CTH, 3CTJ, 3DKF, 3EFJ, 3EFK, 3F66, 3F82, 3I5N, 3L8V, 3LQ8, 3QTI, 3RHK, 3VW8, 3ZXZ, 3ZZE, 4AOI, 4AP7, 4DEG, 4DEH, 4DEI, 4EEV, 
4GG5, and 4GG7. c The pyrimidone inhibitor of MET structure 3EFJ binds via pi–pi stacking interactions, but the dimer resolved in the crystal shows 
that the protein can provide the partner for this interactions with two different side chains, with identical inhibitor binding geometries
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thereby essential for cell transformation, but the details 
of the structures and mechanism of activation are not 
known [76]. Mutations that confer resistance to crizo-
tinib [102] include several that may destabilize the intra-
molecular A-loop helix packing that is apparently part 
of the inactivation mechanism for ALK [103]. The helix 
packs most prominently against the C-helix, with an 
Arg + Glu + Arg triplet, likely to stabilize a helical con-
formation, slotting into a space between two Glu residues 
extending from adjacent turns of the C-helix (of these, 
one is the usual partner to the active site lysine of active 
protein kinase structures. In addition, the phosphoryla-
tion site Tyr1278, which is adjacent to the anchoring Arg 
at the terminus of the activation loop helix, contributes to 
anchoring the helix via an edge-face pi–pi stacking inter-
action with Tyr1096.T his residue is found in a sequence 
N-terminal to the ALK kinase domain. The proximity 
of this anchor to the fusion position for the activation 
fusions with e.g. EML4- or NPM-suggest that the fusion 
may activate the protein by weakening the inactivating 
AL-helix interactions. For MET as a target in NSCLC, it 
is the wt protein which is of greatest relevance, although 
NSCLC related MET mutations have also been observed 
[104].

Summarizing the structures analysed here, we have 
seen most significantly: (1) that the diversity of activation 
forms of ALK, MET, and EGFR show how crystal struc-
tures cluster according to successful crystallization con-
ditions, which is difficult to relate to the distribution of 
structures that are most relevant physiologically or bio-
chemically (for in vitro binding measurements), (2) that 
knowledge of the cross-reactivity of crizotinib is a pre-
requisite for identifying key binding interactions, due to 
the divergence of sequences at the binding site, and (3) 
that these are most likely special interactions of arene 
groups and polarized bonds which would be overlooked 
by simplified molecular mechanics methods that are 
developed for rapid in silico approaches.

How can cheminformatics inform crystallography?
It is clear that structures need to be interpreted with 
respect to binding data. Inhibition and/or binding data 
[47, 49] (including variation of ATP concentration and by 
single site mutation) are available from a variety of pro-
tein forms and assay formats [40, 82, 91, 92, 105–116]. 
Crizotinib binds to an inactive conformation of MET 
[94]. These data show insensitivity to phosphorylation 
in Abl, expected for type I inhibitors [117]). It is how-
ever affected by resistance mutations, whereby the T315I 
mutant of Abl is most tightly bound (ca 10 nM), and the 
gatekeeper+2 mutations F317I or F317L are most weakly 
inhibited (3000 and 600  nM, respectively). This sensi-
tivity is interesting for considerations of ALK and MET 

binding, as described above. It should be readily appre-
ciated that prediction of the ALK-MET cross-reactiv-
ity by automated bioinformatics or structural analysis 
methods seems highly unlikely. Whether more general 
machine-learning approaches could do so, presumably 
by identifying underlying and subtly interlinked selectiv-
ity determinants without recourse to model assumptions, 
remains to be seen. In any case, it will not be a competi-
tion between cheminformatics and crystallography, but 
will involve the integration of structural data into infor-
matics techniques.

Many statistical questions simply identify correlations, 
which may be recognized even with relatively sparse 
datasets. These may then generate hypotheses for more 
detailed study. The principal component analysis of the 
Ambit kinase and inhibitor panel of 2011 [40] generated 
transformed coordinates that indicated unique cluster-
ing for both EGFR and its drug resistant mutant T790M 
(Figs. 4, 8). The coordinate transformation highlights the 
inhibitors especially responsible for the unique position 
of EGFR. Early profiling data already indicated that EGFR 
could be targeted with unique selectivity [39]. The PCA 
transform of the 2011 data, and in particular the 2nd 
and 3rd dimensions, identifies inhibitors with particu-
larly notable EGFR inhibition properties. PC dimension 
#2 (corresponding to a pseudo-inhibitor, see “Methods”), 
which separates EGFR T790M variants from the other 
EGFR mutants, also “bundles” selectivity determinants 
into the corresponding pseudo-inhibitor that have broad 
applicability to the rest of the kinome. One of these is 
most obviously the occurrence of methionine as gate-
keeper, and the PCA plot shows the enrichment of pro-
tein kinase targets with this gatekeeper in the direction of 
the displacement of EGFR T790M variants relative to the 
remaining EGFR cluster. PC dimension #3, with less total 
variance than PC #2, has its clearest source of variance 
with the separation of all the EGFR targets. The “load-
ing plot” for PC #2 and #3 (Fig. 8b) shows the inhibitors 
mostly responsible for the identification of these proper-
ties, and include highly selective EGFR inhibitors such as 
HKI-272, BIBW-2992, etc. (upper quadrants of Fig. 8b), 
and also antiselective inhibitors such as sorafenib (lower 
quadrants). Similarly, inhibitors that bind the native 
EGFR sequence preferentially (right-most quadrants, 
e.g. dasatinib) or the T790M mutant (left quadrants, e.g. 
staurosporine) are identified by PC dimension #2.

Focussing libraries toward ALK + MET + EGFR 
polypharmacological inhibition
The analyses of this work reveal statistical target simi-
larities between Alk and Met, along with a fundamental 
dissimilarity of EGFR, and an intermediate position for 
the drug resistant EGFR-T790M mutant. They also show 
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Fig. 8 Does methionine as gatekeeper correlate generally with the selectivity properties of EGFR inhibitors? a Stereo plot of the first three PCA 
dimensions of the protein kinase inhibition data of the Ambit panel of 2011 (Fig. 4), with the protein kinases colored according to gatekeeper (red 
methionine, gray not methionine). EGFR and mutants are distinguished from the other kinases principally by PC axis 3, while the two gatekeeper 
mutant (T790M) forms of EGFR are distinguished from the other EGFR forms by PC axis 2. b The inhibitors contributing to the composition of PC 
axes 2 and 3 (loading plot) highlight the inhibitors that are potent for EGFR and most potent for the T790M mutations (upper left), those that are 
potent for EGFR but less potent for the T790M mutations (upper right), and inhibitors that are less potent or antiselective for EGFR (lower two quad-
rants)
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however how distributions of structural variations, the 
importance of subtle chemical interactions, and mis-
matches between the systems used to generate experi-
mental binding data prevent direct design of an inhibitor 
with the desired polypharmacological selectivity profile. 
As a consequence, the design goal is to create a library of 
test compounds with the greatest likelihood of having the 
target properties. For ALK, MET, and EGFR, the chal-
lenge is to achieve cross-reactivity despite the dissimilar-
ity of EGFR. (The dissimilarity is shown statistically, as 
in Fig.  2, which also shows the existence of some over-
lap between potent inhibitor sets for ALK or MET and 
EGFR. One example inhibitor is brigatinib [116]). The 
solution is simple: use the known cross-reactivity of ALK 
and MET, which we may consider to be based on the 
“shape” of the respective ATP pockets, and add covalent 
trapping groups at sites with a good potential for reaction 
with the cysteine at the gatekeeper+7 site in EGFR.

Although the unusual nature of EGFR-inhibitor inter-
actions revealed by the cheminformatics above does not 
depend on its cysteine at the gatekeeper+7 position, this 
cysteine does provide an ideal mechanism [45] for a high 
affinity interaction type that is essentially decoupled or 
“orthogonal” to shape-based similarity that character-
izes ALK and MET. Thus, the detailed strategy to focus 
a library for ALK + MET + EGFR polypharmacological 
inhibition is first to identify compound classes that pro-
vide ALK + MET co-inhibition, and then to select scaf-
folds from these that in addition allow modification to 

target covalent inhibition of EGFR. The strength of the 
EGFR interaction need not be high, but would have to 
satisfy geometric and dynamic requirements for covalent 
binding. Many examples of suitable scaffolds have been 
published, and superpositions of the targets and relevant 
inhibitors (Fig. 9) show the viability of the approach.

Crizotinib itself may be considered for this purpose, 
but it does not inhibit EGFR [40] (although is does bind 
the EGFR G719C mutant at micromolar levels). Other 
candidate scaffolds include for example (Fig.  10) stauro-
sporine, bisindolylmaleimides, 4‐{2‐phenylimidazo [1,2‐a] 
pyrazin‐3‐yl} pyrimidine, and 3‐phenyl‐1‐(4‐{thieno[3,2‐
c]pyridin‐3‐yl} phenyl) urea. Examination of the lit-
erature on candidate scaffolds and their suitability for 
ALK + MET + EGFR polypharmacology highlights espe-
cially the tricyclic scaffold found in the covalent EGFR 
inhibitor WZ4002 [118] (PDBID: 3IKA) and other deriva-
tives known for covalent EGFR inhibition [119]. WZ4002 
is known to bind both ALK [118] and MET [120], and 
the core dianilino-pyrimidine kinase binding scaffold 
also shows ALK and MET inhibition (Fig.  10) in other 
compounds [46]. This scaffold is well known in industry, 
including use as in connection with acrylamide groups for 
covalent binding, and a substructure search returns well 
over 104 compounds from patent literature. This need not 
hinder further research, however, because the earliest pat-
ents have expired or are due to expire soon (for example, 
methoxylated forms of (2,4) dianilino 5-chloropyrimidine 
were patented with a priority date of 1995 [121]).

Fig. 9 a Overlay of ALK (red PDBID: 3LCS), MET (blue PDBID: 2WKM), and EGFR (magenta PDBID: 3IKA) showing the relative positions of the tricycle 
inhibitor (here, from WZ4002 as stick model) and gatekeeper+7 targetable cysteine residue of EGFR. b Surface plot to show the relative positions of 
the gatekeeper+7 cysteine of EGFR (magenta surface) and crizotinib (modelled by superposition of the crizotinib-MET complex (PDBID: 2WGJ) with 
EGFR
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 To test the suitability of dianilino-pyrimidine kinase 
binding scaffolds for ALK + MET + EGFR polypharmacol-
ogy, we profiled three compounds representing the basic 
scaffold (including chlorine as the gatekeeper interacting 
atom: 5-chloro-N2,N4-diphenylpyrimidine-2,4-diamine), 
with additional single acrylamide functional groups as sub-
stituents on each of the candidate aromatic rings. Acryla-
mide substitution on the N4 phenyl group (at the meta 
position) places the covalent trap analogous to its position 
in WZ4002. Acrylamide substitution on the N2 phenyl 
moiety (also at the meta position) places the covalent trap 
at a position potentially suitable for a covalent trap to the 
gatekeeper+7 site in EGFR; varying the linker to the acryla-
mide function allows for uncertainties regarding optimal 
geometries and protein plasticity (Fig. 11;  Additional file 1).

Tests of the compounds confirm suitability for 
ALK  +  MET  +  EGFR polypharmacology optimization 
(Table 1). For the N2 phenyl ring substituted compounds 

2a1 and 2b,2  Kd values as measured by KdELECT assays 
(DiscoverX) show submicromolar binding for ALK, MET 
and both tested forms of EGFR. For compound 1,3 with 
the acrylamide function at the site corresponding to that 
of WZ4002, both ALK and MET binding were inhibited 
more weakly compared to EGFR binding. Retesting the 
compounds under scanKINETIC assay conditions for the 
two EGFR targets showed  Kd values that were considera-
bly tighter than in the KdELECT assays, approximately 
2-fold for compound 2a, and 4-7-fold for compounds 1 
and 2b. The sensitivity to the assay conditions seen for 

1 N‐(3‐{[5‐chloro‐4‐(phenylamino)pyrimidin‐2‐yl]amino}phenyl)prop‐2‐
enamide.
2 N‐[(3‐{[5‐chloro‐4‐(phenylamino)pyrimidin‐2‐yl]amino}phenyl)methyl]
prop‐2‐enamide.
3 N‐(3‐{[5‐chloro‐2‐(phenylamino)pyrimidin‐4‐yl]amino}phenyl)prop‐2‐
enamide.

Fig. 10 Candidate chemotypes for orthogonal EGFR covalent inhibition, prioritized based on the binding data of Abbott [46]. Values for individual 
inhibitors are plotted according to ALK and MET binding strengths, with chemotypes indicated by symbol (and defined for the tightest binders) and 
EGFR binding strengths indicated by color (red = 1 nM, violet = 10 nM, blue = 100 nM). The complete structure of the inhibitor for which the data 
point is plotted, is disclosed in the analysis [46], and the corresponding substituents are depicted for this chemotype in the figure at lower satura-
tion
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both forms of EGFR and uniformly tighter binding under 
the new assay conditions may indicate tighter binding for 
ALK and MET under these altered assay conditions as 
well.

The kinetics testing results (Table  1) support several 
further important conclusions. First, comparison of the 
the apparent binding constants comparing 1-h and 6-h 
incubation times show that compounds 1 and 2a are 
relatively slow-binding, while binding of 2b is complete 
within 1 h. Second, comparison of the apparent binding 
constants after 30-fold dilution following one-hour of 
incubation times showed slow dissociation behavior for 
compounds 1 and 2a, and complete dissociation of 2b 
within 5 h. The simultaneous appearance of slow associa-
tion and slow dissociation complicates the interpretation 
of the results, but the percentage values shown in Table 1 
show the apparent residual amounts of compounds 

relative to bound values at 1  h. These values indicate 
retention of roughly half of compound 1, and nearly all 
of compound 2a, after dilution. Covalent binding is the 
most obvious interpretation of these data. In contrast, 
compound 2b follows fast association and dissociation 
kinetics, with no evidence of covalent binding. The simi-
larity of compound 2a to 2b and 1 with respect to struc-
ture and binding strength, differing only in the linker to 
the acrylamide binding group, is further evidence that 
that it is the covalent binding property that determines 
the difference in binding kinetics, rather than e.g. a slow 
conformational change of the target enzymes.

The variations in properties of compounds 1, 2a and 2b 
indicate diversity of their potential application as basic 
scaffolds for generating libraries suitable for polypharma-
cological targeting of Alk, Met, and EGFR. Compound 1, 
with analog WZ4002 known to bind covalently to EGFR, 
has an intrinsic selectivity for EGFR, but still may be suit-
able for Alk-Met-EGFR polypharmacology, with suitable 
decoration. Compounds 2a and 2b, on the other hand, 
show greater affinity for Alk and Met, and good affini-
ties for both EGFR variants. Both 2a and 2b are thus 
good candidates for optimization. However, because 2a 
and apparently not 2b is able to bind covalently to EGFR 
(both forms), the 2a scaffold seems most likely to pro-
vide good chances for polypharmacological optimization, 
as substituents may be chosen to optimize Alk and Met 
binding, using their intrinsically higher similarities, while 
maintaining EGFR binding via the covalent trap (pro-
viding high potency without the need for precise shape 
matching).

Conclusions
The chain of reasoning of this work began with the iden-
tification of a set of relevant key targets for a disease, here 
non small cell lung cancer (NSCLC), and narrowing the 
selection based on the extent of available data on com-
pounds and targets. Targets validated with approved 
inhibitors include EGFR, its drug resistant gatekeeper 
mutant of T190M, as well as ALK and MET. Mutations 

Fig. 11 Tested compounds

Table 1 Alk, Met, and EGFR binding properties of the test 
tricyclic compounds

* EGFR (L858R)
§ EGFR (L858R, T790M)
† Percentages significantly lower than 100% indicate slow association
‡ Percentages significantly higher than 3% indicate slow dissociation

Compound 1 2a 2b

Kd study (nM)

 ALK 800 340 390

 MET >1000 250 330

 EGFRLR* 420 710 780

 EGFRLR+TM§ 110 110 270

Kd values comparing 1 or 6 h incubation times (nM)†

 EGFRLR (1 h) 57 (10%) 340 (14%) 170 (65%)

 EGFRLR+TM (1 h) 25 (13%) 56 (14%) 58 (170%)

 EGFRLR (6 h) 5.7 47 110

 EGFRLR+TM (6 h) 3.2 8 100

Apparent  Kd values with 30× dilution after 1 h incubation (nM)‡

 EGFRLR (30× dilution) 32 (56%) 340 (100%) 2900 (5.9%)

 EGFRLR+TM (30× diution) 12 (48%) 56 (100%) 4100 (1.4%)
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or fusions of both EGFR and ALK may be primary causes 
of cancer, whereas both the EGFR gatekeeper mutant 
T190M and MET may generate drug resistance. Analysis 
of the relevant inhibitor binding data identified similari-
ties between ALK and MET, and highlighted the essential 
dissimilarity of EGFR, with an intermediate position for 
the T790M mutant. A result of this analysis is the choice 
of a strategy for polypharmacology to optimize ALK and 
MET binding via shape and surface complementarity, 
while maintaining covalent binding to EGFR. A suitable 
inhibitor scaffold was chosen, based solely on binding 
data. An accompanying analysis of the published crys-
tal structures for the targets, aiming to guide optimiza-
tion, highlighted mostly the intractability of mapping 
the inhibitor binding similarities to structural properi-
tes. This is due both to great structural variability of the 
targets and to the subtle nature of the essential interac-
tions, which generally are not recognizable by molecular 
mechanics methods. However, the structures did high-
light key details, such as the unusual binding interac-
tions of crizotinib that are conserved between ALK and 
MET, despite differences in sequence, and also the bind-
ing mode of the dianilino-pyrimidine inhibitor scaffold. 
Thus, crystallography informs cheminformatics. This 
polypharmacology targeting example, while highlight-
ing specific characteristics of ALK, MET, and EGFR, may 
be generalizable to other kinase target profiles in several 
ways. The flexibility and large numbes of kinases means 
that similar intractabilities of structural analysis will 
occur, but also that other combinations of diverse selec-
tivity mechanisms may be found for appropriate target-
ing. Automation of such approaches seem highly unlikely 
until these mechanisms may be catalogued in some 
machine-analysable form. Other non-kinase polyphar-
macology approaches will likely be quite different, possi-
bly involving target profiles more diverse, more rigid, or 
otherwise distinct from protein kinases.

Methods
Activity homology data were taken from Posy et  al. [80], 
with the data for Alk, Met, EGFR and EGFR-L858R, 
T790M plotted with Excel (Fig.  2a), and as a heat map 
(Fig.  2b) with tree clustering performed by the Clus-
termap function of the Seaborn python package (DOI: 
10.5281/zenodo.45133). This measure is defined as the 
percentage of potent inhibitors (those with an estimated 
IC50  <  150  nM) of a reference kinase “A” that are also 
potent inhibitors of the comparison kinase “B”. As defined, 
this is “the prior probability that a compound will be active 
for kinase B given that it is active for kinase A” [80]. (Note 
that this defines a matrix which is not symmetric with 
respect to swapping the reference and compared kinases, 
because each will have a unique set of potent inhibitors.)

Kinome profiles of target similarity (Fig. 3) were eval-
uated using the data of Davis et  al. [40], with the nM 
inhibition values  xi converted into logarithms to be pro-
portional to binding energies for inhibition values tighter 
than the upper measurement limit of 10 micromolar, 
and arbitrarily set uniformly to 5 (corresponding to 100 
micromolar) for values above the upper measurement 
limit. These values were used to calculate target similar-
ity as Pearson’s correlation coefficient for the pairs of vec-
tors of binding energy equivalents and plotted as disks at 
the kinase positions of the kinome plot of Manning et al. 
[122]. Hues and radii reflect the correlation values.

Principal components (Figs.  4, 8) were determined 
using Karhunen–Loeve Decomposition as implemented 
in Mathematica (version 10.3) with the binding energy 
equivalent values. This method of data analysis can be 
applied to an t · n matrix Tij that represents how the t tar-
gets are inhibited by n inhibitors (the targets {i} are thus t 
positions in an n-dimensional space of inhibitors {j}). The 
analysis determines the orthonormal linear transformation 
of the coordinate system that diagonalizes the t · t covari-
ance or correlation matrices of the targets with respect to 
their inhibition profiles. This transformation into a new 
n dimensional space of virtual or pseudo-inhibitors {k} is 
done (usually with the {Ti,1,  Ti,2,…} vectors normalized 
to unit variance and zero average) such that the variance 
is maximal for k = 1 (PCA dimension 1), second highest 
for k = 2 (PCA dimension 2), and so on. This reduces the 
redundancy of similarities between inhibitors, and clusters 
the targets in spaces whose dimensionality may be reduced 
according to the degree of variance desired “to explain the 
data”. As the PCA transformation maximizes the spread 
in inhibition values by a “pseudo-inhibitor” created by the 
recombination of inhibitors of the dataset, inhibitors that 
are selective for subgroups of targets are most strongly 
represented in the relevant transformed coordinates, with 
the (mutually orthogonal) coordinates ranked (PC #1, PC 
#2, etc.) according to the total variance in that coordinate. 
The “loading plots” show the coefficients of the individual 
inhibitors in the “pseudo-inhibitor” principal components 
created by the transformation.

Superpositions of the ALK, MET, and EGFR protein 
kinase structures from the Protein Data Bank (PDB) 
(Additional file  2) were performed using PYMOL (ver-
sion 1.7) and scripts that extracted protein kinase mono-
mers from the entries. The scripts aligned the CA atoms 
from the gatekeeper+3 residue as hinge anchor position 
(1196–1199—ALK, 1158–1161—MET, 766–769 or 790–
793—EGFR), along with aF helix atoms as the core of the 
C-lobe (1308–1324—ALK, 1262–1278—MET, 869-885 
or 893–909—EGFR) residues.

SIMCA (v.13, Umetrics AB, Umeå, Sweden) was used 
to build a PLS regression plot [123] (Fib 6c) by taking 

http://dx.doi.org/10.5281/zenodo.45133
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233 parameters (distances, angles, dihedrals etc.) from 
the annotated dataset of Möbitz [97] as independent 
variables and the designated active/inactive state of the 
kinase domains as the dependent variable. Thus, the 
PLS method transforms the dimensions of the individual 
structural parameters [97] into orthogonal dimensions 
that maximize covariance of the transformed dimensions 
with the activity state of the kinase. In the SIMCA imple-
mentation, a 7-fold cross validation technique prevents 
overfitting in the estimate of the number of significant 
components. The variables were scaled by unit variance. 
The PLS model built from this dataset has 4-components 
with both R2 (goodness of fit, maximum 1) and Q2 (pre-
dictive ability, maximum 1) values more than 0.9, where 
1st and 2nd components account for about 80 and 6% of 
the variations respectively.

 The three tricyclic compounds (1, 2a and 2b) were 
purchased from the company ARTTSynthesis (www.
arttsynthesis.com). Tests for binding properties were 
performed by the company DiscoverX (www.discoverx.
com), using a concentration of 1 µM against ALK, MET 
and EGFR variants L858R and L858R_T790M) using 
KdELECT and scanKINETIC from DiscoverX [124, 125].
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