77 research outputs found

    Deciphering of interactions between platinated DNA and HMGB1 by hydrogen/deuterium exchange mass spectrometry

    Get PDF
    A high mobility group box 1 (HMGB1) protein has been reported to recognize both 1,2-intrastrand crosslinked DNA by cisplatin (1,2-cis-Pt-DNA) and monofunctional platinated DNA using trans-[PtCl2(NH3)(thiazole)] (1-trans-PtTz-DNA). However, the molecular basis of recognition between the trans-PtTz-DNA and HMGB1 remains unclear. In the present work, we described a hydrogen/deuterium exchange mass spectrometry (HDX-MS) method in combination with docking simulation to decipher the interactions of platinated DNA with domain A of HMGB1. The global deuterium uptake results indicated that 1-trans-PtTz-DNA bound to HMGB1a slightly tighter than the 1,2-cis-Pt-DNA. The local deuterium uptake at the peptide level revealed that the helices I and II, and loop 1 of HMGB1a were involved in the interactions with both platinated DNA adducts. However, docking simulation disclosed different H-bonding networks and distinct DNA-backbone orientations in the two Pt-DNA-HMGB1a complexes. Moreover, the Phe37 residue of HMGB1a was shown to play a key role in the recognition between HMGB1a and the platinated DNAs. In the cis-Pt-DNA-HMGB1a complex, the phenyl ring of Phe37 intercalates into a hydrophobic notch created by the two platinated guanines, while in the trans-PtTz-DNA-HMGB1a complex the phenyl ring appears to intercalate into a hydrophobic crevice formed by the platinated guanine and the opposite adenine in the complementary strand, forming a penta-layer π–π stacking associated with the adjacent thymine and the thiazole ligand. This work demonstrates that HDX-MS associated with docking simulation is a powerful tool to elucidate the interactions between platinated DNAs and proteins

    Glucose-fueled Micromotors with Highly Efficient Visible Light Photocatalytic Propulsion

    Get PDF
    Synthetic micro/nanomotors fueled by glucose are highly desired for numerous practical applications because of the biocompatibility of their required fuel. However, currently all of the glucose-fueled micro/nanomotors are based on enzyme-catalytic-driven mechanisms, which usually suffer from strict operation conditions and weak propulsion characteristics that greatly limit their applications. Here, we report a highly efficient glucose-fueled cuprous oxide@N-doped carbon nanotube (Cu_2O@N-CNT) micromotor, which can be activated by environment-friendly visible-light photocatalysis. The speeds of such Cu_2O@N-CNT micromotors can reach up to 18.71 μm/s, which is comparable to conventional Pt-based catalytic Janus micromotors usually fueled by toxic H_2O_2 fuel. In addition, the velocities of such motors can be efficiently regulated by multiple approaches, such as adjusting the N-CNT content within the micromotors, glucose concentrations, or light intensities. Furthermore, the Cu_2O@N-CNT micromotors exhibit a highly controllable negative phototaxis behavior (moving away from light sources). Such motors with outstanding propulsion in biological environments and wireless, repeatable, and light-modulated three-dimensional motion control are extremely attractive for future practical applications

    Large Ecosystem Service Benefits of Assisted Natural Regeneration

    Get PDF
    China manages the largest monoculture plantations in the world, with 24% being Chinese fir plantations. Maximizing the ecosystem services of Chinese fir plantations has important implications in global carbon cycle and biodiversity protection. Assisted natural regeneration (ANR) is a practice to convert degraded lands into more productive forests with great ecosystems services. However, the quantitative understanding of ANR ecosystem service benefits is very limited. We conducted a comprehensive field manipulation experiment to evaluate the ANR potentials. We quantified and compared key ecosystem services including surface runoff, sediment yield, dissolved organic carbon export, plant diversity, and aboveground carbon accumulation of ANR of secondary forests dominated by Castanopsis carlesii to that of Chinese fir and C. carlesii plantations. Our results showed that ANR of C. carlesii forest reduced surface runoff and sediment yield up to 50% compared with other young plantations in the first 3 years and substantially increased plant diversity. ANR also reduced the export of dissolved organic carbon by 60–90% in the first 2 years. Aboveground biomass of the young ANR forest was approximately 3–4 times of that of other young plantations, while aboveground biomass of mature ANR forests was approximately 1.4 times of that of mature Chinese fir plantations of the same age. If all Chinese fir plantations in China were replaced by ANR forests, potentially 0.7 Pg more carbon will be stored in aboveground in one rotation (25 years). The results indicate that ANR triggers positive feedbacks among soil and water conservation, biodiversity protection, and biomass accumulation and thereby enhances ecosystem services

    Unveiling the additive-assisted oriented growth of perovskite crystallite for high performance light-emitting diodes.

    Get PDF
    Solution-processed metal halide perovskites have been recognized as one of the most promising semiconductors, with applications in light-emitting diodes (LEDs), solar cells and lasers. Various additives have been widely used in perovskite precursor solutions, aiming to improve the formed perovskite film quality through passivating defects and controlling the crystallinity. The additive's role of defect passivation has been intensively investigated, while a deep understanding of how additives influence the crystallization process of perovskites is lacking. Here, we reveal a general additive-assisted crystal formation pathway for FAPbI3 perovskite with vertical orientation, by tracking the chemical interaction in the precursor solution and crystallographic evolution during the film formation process. The resulting understanding motivates us to use a new additive with multi-functional groups, 2-(2-(2-Aminoethoxy)ethoxy)acetic acid, which can facilitate the orientated growth of perovskite and passivate defects, leading to perovskite layer with high crystallinity and low defect density and thereby record-high performance NIR perovskite LEDs (~800 nm emission peak, a peak external quantum efficiency of 22.2% with enhanced stability)

    GRIK3 rs490647 is a Common Genetic Variant between Personality and Subjective Well-being in Chinese Han Population

    Get PDF
    Personality and subjective well-being (SWB) have been suggested to be strongly related in previous studies. This study was intended to confirm the relationship between personality and SWB and tried to seek out the genetic variants which underlie both personality and SWB. The subjects were 890 participants from Chinese Han population. We evaluated their personality using the Big Five Inventory (BFI) and used the Satisfaction With Life Scale (SWLS) to reflect their SWB. Five single nucleotide polymorphisms (SNPs) were selected from the literature (rs1426371, rs2164273, rs322931, rs3756290, rs490647) and genotyped for genetic association study. We found negative correlations between neuroticism and SWB. On the contrary, extraversion and agreeableness were positively associated with SWB. Three SNPs (rs2164273, rs3756290, rs490647) out of the five were found to connect with personality (extraversion, neuroticism, conscientiousness and openness to experience) and rs490647 variants of GRIK3 was also associated with SWB. Individuals carrying G allele at this site were predisposed to have lower risk to be neuroticism and greater chance to be extraverted, open and satisfied with their life. In summary, our study revealed that rs490647 might be a good candidate genetic variant for personality and SWB in Chinese Han population

    Numerical research on hydrodynamic characteristics of propeller boss cap fins

    No full text
    [Objectives] With the increasing popularity of the concept of green ships, marine hydrodynamic energy-saving technology has drawn more attention from researchers. This paper studies the way to reduce energy consumption of ships at sea.[Methods] naoe-FOAM-SJTU solver independently developed by Prof. Wan Decheng's research team in Shanghai Jiao Tong University is used to numerically investigate the hydrodynamic characteristics of Propeller Boss Cap Fins (PBCF). In order to better investigate the interaction between PBCF and propeller,the influences of PBCF on blades,hubs and hub caps are studied respectively.[Results] It is found that the hubs and hub caps are less affected by PBCF, and despite sharp reduction of the propeller torque,the influence of PBCF on the overall thrust is limited. Further it is found that the Reynolds number has great influence on the energy-saving characteristic of PBCF and has a critical value below which the increasing Reynolds number will give rise to greatly improved energy-saving effect,and above which,the energy-saving effect is basically unchanged. This shows that PBCF may have better energy-saving characteristics in the full scale which has the critical Reynolds number.[Conclusions] The findings are satisfactory and shows that the naoe-FOAM-SJTU solver is feasible for the direct simulation of hydrodynamic characteristics of PBCF,and this research method can be applied to other energy-saving devices

    A Review of High-Fidelity Computational Fluid Dynamics for Floating Offshore Wind Turbines

    No full text
    The design and development of floating offshore wind turbines (FOWTs) is an attractive issue in the wind energy harvesting field. In this study, the research related to the high-fidelity computational fluid dynamic simulations of FOWTs is comprehensively summarized and analyzed. Specifically, the component-level studies including aerodynamics, aeroelasticity and hydrodynamics are presented. The system studies with increasing complexity are performed, such as the simplified aerodynamics, prescribed platform motions and fully coupled aero-hydrodynamics, as well as a little knowledge relevant to the aero-hydro-elastic behaviors. This study emphasizes that some efforts should shift to the research on strongly coupled aero-hydro-elastic performance of FOWTs with the increasing rotor diameter. Moreover, further investigations of more realistic atmospheric inflows and strong interactions between multi-FOWTs are required. This study aims to introduce the hotspots of high-fidelity simulations of FOWTs to novel researchers, as well as to provide some suggested solutions

    Advances in physiologically relevant actuation of shape memory polymers for biomedical applications

    No full text
    The synergistic effects of the combination of hyperthermia and chemotherapy have implicated the critical role of hyperthermia temperatures in clinical practice. Temperature sensitive polymers, which are capable of exhibiting controllable shapes under various temperature actuations, have attracted considerable interests for designing intelligent medical devices. While shape memory performances have been demonstrated with a wide range of temperatures, here we focus our discussion on shape memory polymers with physiologically relevant application temperatures and proper shape recovery speed. This review presents an overview of body-friendly thermo-responsive shape memory polymers, including commonly used biopolymers, various actuation methods, and their potential biomedical applications
    • …
    corecore