439 research outputs found

    Concise and Effective Network for 3D Human Modeling from Orthogonal Silhouettes

    Full text link
    In this paper, we revisit the problem of 3D human modeling from two orthogonal silhouettes of individuals (i.e., front and side views). Different from our prior work {\cite{wang2003virtual}}, a supervised learning approach based on \textit{convolutional neural network} (CNN) is investigated to solve the problem by establishing a mapping function that can effectively extract features from two silhouettes and fuse them into coefficients in the shape space of human bodies. A new CNN structure is proposed in our work to exact not only the discriminative features of front and side views and also their mixed features for the mapping function. 3D human models with high accuracy are synthesized from coefficients generated by the mapping function. Existing CNN approaches for 3D human modeling usually learn a large number of parameters (from {8.5M} to {355.4M}) from two binary images. Differently, we investigate a new network architecture and conduct the samples on silhouettes as input. As a consequence, more accurate models can be generated by our network with only {2.4M} coefficients. The training of our network is conducted on samples obtained by augmenting a publicly accessible dataset. Learning transfer by using datasets with a smaller number of scanned models is applied to our network to enable the function of generating results with gender-oriented (or geographical) patterns

    Tadalafil-loaded PLGA microspheres for pulmonary administration: preparation and evaluation

    Get PDF
    Tadalafil, a long-acting PED-5 inhibitor, is commonly used for the treatment of pulmonary arterial hypertension (PAH). However, its efficacy and clinical application are severely limited by the poor water solubility, low bioavailability and a series adverse effects (e.g. headaches, indigestion). In this study, tadalafil was prepared and loaded into biodegradable PLGA (poly(lactic-co-glycolic acid)) microspheres (TDF-PLGA-MS) via emulsification-solvent evaporation. The resulting microspheres were processed into pulmonary inhalant by freeze drying. The TDF-PLGA-MS was spherical and uniform, with an average particle diameter ~10.29 μm. The encapsulation efficiency and drug loading yield of TDF‑PLGA‑MS were 81.68% and 8.52%, respectively. The investigation of micromeritics showed that the TDF‑PLGA‑MS had low moisture content. The fluidity of powders was relatively good. The aerodynamic diameter and emptying rate of microspheres powders were 3.92 μm and 95.41%, respectively. Therefore, the microspheres powders were easy to be atomized, and can meet the requirements of pulmonary administration. In vitro release results showed that the microspheres group released slowly. The cumulative release in 24 h and 10 d was 46.87% and 84.06%, respectively. The in vitro release profile of TDF‑PLGA‑MS was in accordance with the Weibull model. The results of Pharmacokinetics showed that tadalafil from microspheres slowly released into the blood after intratracheal instillation. The pulmonary drug residue in 0.5 h was 3.5 times compared with solution group. The residual concentration in lung after 10d was still higher than that of solution group in 48 h. The t1/2β and MRT0-∞ were 3.10 times and 3.96 times that of solution group, respectively. Moreover, the Cmax and AUC of drug residues in lung were 3.48 times and 16.36 times that of solution group, respectively. The results of tissue distribution showed that the Re in lung was 16.358, which indicated the lung targeting. In conclusion, the TDF-PLGA-MS for pulmonary administration in this study can significantly improve the pulmonary targeting, increase efficacy of tadalafil and reduce other non-target organs toxicity. This study will have an important clinical significance for PAH patients who need long-term drug therapy

    CD40LG and GZMB were correlated with adipose tissue macrophage infiltration and involved in obstructive sleep apnea related metabolic dysregulation: Evidence from bioinformatics analysis

    Get PDF
    Both obesity and obstructive sleep apnea (OSA) can lead to metabolic dysregulation and systemic inflammation. Similar to obesity, increasing evidence has revealed that immune infiltration in the visceral adipose tissue (VAT) is associated with obstructive sleep apnea-related morbidity. However, the pathological changes and potential molecular mechanisms in visceral adipose tissue of obstructive sleep apnea patients need to be further studied. Herein, by bioinformatics analysis and clinical validation methods, including the immune-related differentially expressed genes (IRDEGs) analysis, protein-protein interaction network (PPI), functional enrichment analysis, a devolution algorithm (CIBERSORT), spearman’s correlation analysis, polymerase chain reaction (PCR), Enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry (IHC), we identified and validated 10 hub IRDEGs, the relative mRNA expression of four hub genes (CRP, CD40LG, CCL20, and GZMB), and the protein expression level of two hub genes (CD40LG and GZMB) were consistent with the bioinformatics analysis results. Immune infiltration results further revealed that obstructive sleep apnea patients contained a higher proportion of pro-inflammatory M1 macrophages and a lower proportion of M2 macrophages. Spearman’s correlation analysis showed that CD40LG was positively correlated with M1 macrophages and GZMB was negatively correlated with M2 macrophages. CD40LG and GZMB might play a vital role in the visceral adipose tissue homeostasis of obstructive sleep apnea patients. Their interaction with macrophages and involved pathways not only provides new insights for understanding molecular mechanisms but also be of great significance in discovering novel small molecules or other promising candidates as immunotherapies of OSA-associated metabolic complications

    Estimating continental river basin discharges using multiple remote sensing data sets

    Get PDF
    AbstractRivers act as a source of fresh water for terrestrial life, yet the discharges are poorly documented since the existing direct observations are inadequate and some observation stations have been interrupted or discontinued. Discharge estimates using remote sensing thus have a great potential to supplement ground observations. There are remote sensing methods established to estimate discharge based on single parameter derived relationships; however, they are limited to specific sections due to their empirical nature. In this study, we propose an innovative method to estimate daily discharges for continental rivers (with river channel widths >800m (Birkett and Beckley, 2010)) using two satellite derived parameters. Multiple satellite altimetry data and Moderate Resolution Imaging Spectroradiometer (MODIS) data are used to provide a time series of river stages and effective river width. The derived MODIS and altimetry data are then used to optimize unknown parameters in a modified Manning's equation. In situ measurements are used to derive rating curves and to provide assessments of the estimated results. The Nash–Sutcliffe efficiency values for the estimates are between 0.60 and 0.97, indicating the power of the method and accuracy of the estimations. A comparison with a previously developed empirical multivariate equation for estimating river discharge shows that our method produces superior results, especially for large rivers. Furthermore, we found that discharge estimates using both effective river width and stage information consistently outperform those that only use stage data

    Neu-P11, a novel melatonin receptor agonist, could improve the features of type-2 diabetes mellitus in rats

    Get PDF
    Objective: Melatonin (Mel) and its receptors are promising for glycemic control in patients with type-2 diabetes mellitus (T2DM) and its complications, but there is significant heterogeneity among studies. This study aims to investigate the effects of Mel receptor agonist Neu-P11 on glucose metabolism, immunity and islet function in T2DM rats. Methods: In this study, SD rats were treated with high fat diet and streptozotocin (STZ) to establish T2DM model. Glucose oxidase method was used to measure blood glucose level. Glucose and insulin tolerance tests were used to assess glucose metabolism. HE staining was used to observe the pancreatic tissue injury. The apoptosis of islet β cells was analyzed by TUNEL and insulin staining. ROS levels and immune cell expression were analyzed by flow cytometry. IF was used to analyze the activation of microglia. The IgA, IgG, IgM, TNF-α, IL-10, IL-1β, IFN-γ, C-peptide and Insulin levels were determined by ELISA. The expression of CD11b, CD86, cleaved caspase3, p21, and P16 proteins were analyzed by western blot. Results: The results showed that the blood glucose level increased, insulin resistance occurred, spleen coefficient and ROS levels increased, humoral immunity in peripheral blood decreased, and inflammation increased in the model group compared to the control group. After Mel and Neu-P11 treatment, the blood glucose level decreased significantly, insulin sensitivity improved, spleen coefficient and ROS levels decreased, humoral immunity in peripheral blood enhanced, and inflammation improved in T2DM rats. Brain functional analysis of T2DM rats showed that microglia cells were activated, TNF-α and IL-β levels were increased, and IL-10 levels were decreased. Mel and Neu-P11 treatment reversed these indexes. Functional analysis of islet in T2DM rats showed that islet structure inflammation was impaired, islet β cells were apoptotic, p21 and p16 protein expressions were increased, and blood C-peptide and insulin were decreased. Mel and Neu-P11 treatment restored the function of pancreatic β cells and improved the damage of pancreatic tissue. Conclusion: Melatonin and its receptor Neu-P11 can reduce blood glucose level, enhance humoral and cellular immunity, inhibit microglia activation and inflammation, and repair islets β cell function, improve the characterization of T2DM related diseases
    • …
    corecore