2,899 research outputs found

    A critical review on bismuth and antimony halide based perovskites and their derivatives for photovoltaic applications: Recent advances and challenges

    Get PDF
    In the past decade, lead halide perovskites experienced impressive progress in photovoltaics with the certified device conversion efficiency over 25%, owing to their outstanding optoelectronic properties. However, the toxicity and environmental instability of the core lead halide materials would strongly limit their commercialization. Within this scenario, research investigations directed at assessing the properties and opportunities offered by emerging lead-free halide perovskites are becoming everyday more relevant to pinpoint new low-cost/low-toxicity solutions for solar-to-electricity conversion. In this review, group VA metal halide based perovskites, namely those of bismuth (Bi) and antimony (Sb), and their derivatives with different valence states are classified based on the formulae A3B2X9 and A2AgBX6, also known as double perovskites, and AgaBibXa+3b, called rudorffites (A = MA, FA, Cs, Rb, etc.; B = Bi, Sb; X = I, Br, Cl). Here, we summarize the recent progress in the exploitation of these materials, with special attention devoted to the description of the crystal structures, thin film preparation methods and performances in real devices, including both theoretical insights and experimental observations. With this survey, we are able to provide reasonable perspectives for the future development of high-performance photovoltaic devices based on lead-free bismuth/antimony halide based perovskites and their derivatives

    Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots

    Get PDF
    Mandow, A; Cantador, T.J.; Reina, A.J.; Martínez, J.L.; Morales, J.; García-Cerezo, A. "Building Fuzzy Elevation Maps from a Ground-based 3D Laser Scan for Outdoor Mobile Robots," Robot2015: Second Iberian Robotics Conference, Advances in Robotics, (2016) Advances in Intelligent Systems and Computing, vol. 418. This is a self-archiving copy of the author’s accepted manuscript. The final publication is available at Springer via http://link.springer.com/book/10.1007/978-3-319-27149-1.The paper addresses terrain modeling for mobile robots with fuzzy elevation maps by improving computational speed and performance over previous work on fuzzy terrain identification from a three-dimensional (3D) scan. To this end, spherical sub-sampling of the raw scan is proposed to select training data that does not filter out salient obstacles. Besides, rule structure is systematically defined by considering triangular sets with an unevenly distributed standard fuzzy partition and zero order Sugeno-type consequents. This structure, which favors a faster training time and reduces the number of rule parameters, also serves to compute a fuzzy reliability mask for the continuous fuzzy surface. The paper offers a case study using a Hokuyo-based 3D rangefinder to model terrain with and without outstanding obstacles. Performance regarding error and model size is compared favorably with respect to a solution that uses quadric-based surface simplification (QSlim).This work was partially supported by the Spanish CICYT project DPI 2011-22443, the Andalusian project PE-2010 TEP-6101, and Universidad de Málaga-Andalucía Tech

    Optimal Uncertainty Quantification

    Get PDF
    We propose a rigorous framework for Uncertainty Quantification (UQ) in which the UQ objectives and the assumptions/information set are brought to the forefront. This framework, which we call \emph{Optimal Uncertainty Quantification} (OUQ), is based on the observation that, given a set of assumptions and information about the problem, there exist optimal bounds on uncertainties: these are obtained as values of well-defined optimization problems corresponding to extremizing probabilities of failure, or of deviations, subject to the constraints imposed by the scenarios compatible with the assumptions and information. In particular, this framework does not implicitly impose inappropriate assumptions, nor does it repudiate relevant information. Although OUQ optimization problems are extremely large, we show that under general conditions they have finite-dimensional reductions. As an application, we develop \emph{Optimal Concentration Inequalities} (OCI) of Hoeffding and McDiarmid type. Surprisingly, these results show that uncertainties in input parameters, which propagate to output uncertainties in the classical sensitivity analysis paradigm, may fail to do so if the transfer functions (or probability distributions) are imperfectly known. We show how, for hierarchical structures, this phenomenon may lead to the non-propagation of uncertainties or information across scales. In addition, a general algorithmic framework is developed for OUQ and is tested on the Caltech surrogate model for hypervelocity impact and on the seismic safety assessment of truss structures, suggesting the feasibility of the framework for important complex systems. The introduction of this paper provides both an overview of the paper and a self-contained mini-tutorial about basic concepts and issues of UQ.Comment: 90 pages. Accepted for publication in SIAM Review (Expository Research Papers). See SIAM Review for higher quality figure

    A multiple exp-function method for nonlinear differential equations and its application

    Full text link
    A multiple exp-function method to exact multiple wave solutions of nonlinear partial differential equations is proposed. The method is oriented towards ease of use and capability of computer algebra systems, and provides a direct and systematical solution procedure which generalizes Hirota's perturbation scheme. With help of Maple, an application of the approach to the 3+13+1 dimensional potential-Yu-Toda-Sasa-Fukuyama equation yields exact explicit 1-wave and 2-wave and 3-wave solutions, which include 1-soliton, 2-soliton and 3-soliton type solutions. Two cases with specific values of the involved parameters are plotted for each of 2-wave and 3-wave solutions.Comment: 12 pages, 16 figure

    A posteriori error analysis and adaptive non-intrusive numerical schemes for systems of random conservation laws

    Full text link
    In this article we consider one-dimensional random systems of hyperbolic conservation laws. We first establish existence and uniqueness of random entropy admissible solutions for initial value problems of conservation laws which involve random initial data and random flux functions. Based on these results we present an a posteriori error analysis for a numerical approximation of the random entropy admissible solution. For the stochastic discretization, we consider a non-intrusive approach, the Stochastic Collocation method. The spatio-temporal discretization relies on the Runge--Kutta Discontinuous Galerkin method. We derive the a posteriori estimator using continuous reconstructions of the discrete solution. Combined with the relative entropy stability framework this yields computable error bounds for the entire space-stochastic discretization error. The estimator admits a splitting into a stochastic and a deterministic (space-time) part, allowing for a novel residual-based space-stochastic adaptive mesh refinement algorithm. We conclude with various numerical examples investigating the scaling properties of the residuals and illustrating the efficiency of the proposed adaptive algorithm

    Modelling social identification and helping in evacuation simulation

    Get PDF
    Social scientists have criticised computer models of pedestrian streams for their treatment of psychological crowds as mere aggregations of individuals. Indeed most models for evacuation dynamics use analogies from physics where pedestrians are considered as particles. Although this ensures that the results of the simulation match important physical phenomena, such as the deceleration of the crowd with increasing density, social phenomena such as group processes are ignored. In particular, people in a crowd have social identities and share those social identities with the others in the crowd. The process of self categorisation determines norms within the crowd and influences how people will behave in evacuation situations. We formulate the application of social identity in pedestrian simulation algorithmically. The goal is to examine whether it is possible to carry over the psychological model to computer models of pedestrian motion so that simulation results correspond to observations from crowd psychology. That is, we quantify and formalise empirical research on and verbal descriptions of the effect of group identity on behaviour. We use uncertainty quantification to analyse the model’s behaviour when we vary crucial model parameters. In this first approach we restrict ourselves to a specific scenario that was thoroughly investigated by crowd psychologists and where some quantitative data is available: the bombing and subsequent evacuation of a London underground tube carriage on July 7th 2005

    Combining polynomial chaos expansions and genetic algorithm for the coupling of electrophysiological models

    Get PDF
    The number of computational models in cardiac research has grown over the last decades. Every year new models with di erent assumptions appear in the literature dealing with di erences in interspecies cardiac properties. Generally, these new models update the physiological knowledge using new equations which reect better the molecular basis of process. New equations require the fi tting of parameters to previously known experimental data or even, in some cases, simulated data. This work studies and proposes a new method of parameter adjustment based on Polynomial Chaos and Genetic Algorithm to nd the best values for the parameters upon changes in the formulation of ionic channels. It minimizes the search space and the computational cost combining it with a Sensitivity Analysis. We use the analysis of di ferent models of L-type calcium channels to see that by reducing the number of parameters, the quality of the Genetic Algorithm dramatically improves. In addition, we test whether the use of the Polynomial Chaos Expansions improves the process of the Genetic Algorithm search. We conclude that it reduces the Genetic Algorithm execution in an order of 103 times in the case studied here, maintaining the quality of the results. We conclude that polynomial chaos expansions can improve and reduce the cost of parameter adjustment in the development of new models.Peer ReviewedPostprint (author's final draft

    Energy Dependence of the Contribution of Pion Exchange to Large-Rapidity-Gap Events in Deep Inelastic Scattering

    Get PDF
    We study the energy dependence of the contribution of pion exchange to large-rapidity-gap events in deep inelastic scattering. The results show that this contribution can be quite significant at low energy and that the LRG events observed by E665 collaboration in \mu Xe and \mu D interactions at 490 GeVGeV can be reasonably well described in terms of meson exchange. We also show that the distribution of the maximum rapidity for all hadrons is quite different from that for charged hadrons only and that the former exhibits also shoulder-like structure for events at 490 GeVGeV similar to that at HERA.Comment: 12 pages, 4 figures, Phys. Rev. D (in press
    • …
    corecore