51 research outputs found

    Influence of host plant nitrogen fertilization on haemolymph protein profiles of herbivore Spodoptera exigua and development of its endoparasitoid Cotesia marginiventris

    Get PDF
    Citation: Chen, Y., Ruberson, J. R., & Ni, X. (2014). Influence of host plant nitrogen fertilization on haemolymph protein profiles of herbivore Spodoptera exigua and development of its endoparasitoid Cotesia marginiventris. Retrieved from http://krex.ksu.eduNitrogen has complex effects on plant-herbivore-parasitoid tri-trophic interactions. The negative effects of host plant low nitrogen fertilization on insect herbivores in many cases can be amplified to the higher trophic levels. In the present study, we examined the impact of varying nitrogen fertilization (42, 112, 196, and 280 ppm) on cotton plants (Gossypium hirsutum L.) on the interactions between the beet armyworm, Spodoptera exigua (Hübner) (Lepidoptera: Noctuidae), and the hymenopteran endoparasitoid Cotesia marginiventris (Cresson) (Hymenoptera: Braconidae). We predicted that the development and fitness of C. marginiventris would be adversely affected by low host plant nitrogen fertilization through the herbivore S. exigua. The percentage of C. marginiventris offspring developing to emerge and spin a cocoon, and total mortality of parasitized S. exigua larvae were unaffected by nitrogen level. The developmental time of C. marginiventris larvae in S. exigua larvae feeding on low (42 ppm) nitrogen cotton plants was approximately 30% longer than that of those feeding on high (112, 196, and 280 ppm) nitrogen plants. Parasitoid size (length of right metathoracic tibia), a proxy for fitness, of C. marginiventris males was positively affected by nitrogen level. Total amounts of S. exigua haemolymph proteins were not affected by nitrogen level, but were reduced by parasitism by C. marginiventris. Two proteins with molecular weights of ca. 84 and 170 kDa dominated the S. exigua larval haemolymph proteins. Concentrations of the 170 kDa haemolymph protein were unaffected by nitrogen treatment, but parasitism reduced concentrations of the the 170 kDa protein. Concentrations of the 84 kDa protein, on the other hand, were interactively affected by parasitism and nitrogen treatment: higher nitrogen fertilization (112, 196, and 280 ppm) increased protein concentrations relative to the 42 ppm treatment for unparasitized S. exigua larvae, whereas nitrogen treatment had no effects on parasitized larvae. For S. exigua larvae feeding on 42 ppm nitrogen plants, parasitism increased concentration of the 84 kDa protein, while for those feeding on 112, 196, and 280 ppm nitrogen plants, parasitism decreased concentrations of the protein. Possible mechanisms and ecological consequences for the extended development of C. marginiventris on S. exigua hosts grown on low-nitrogen plants are discussed

    Insect-Attracting and Antimicrobial Properties of Antifreeze for Monitoring Insect Pests and Natural Enemies in Stored Corn

    Get PDF
    Insect infestations in stored grain cause extensive damage worldwide. Storage insect pests, including the Indianmeal moth, Plodia interpunctella (Hubner) (Lepidoptera: Pyralidae); Sitophilus spp. (Coleoptera: Curculionidae); and their natural enemies [e.g., Cephalonomia tarsalis (Ashmead) (Hymenoptera: Bethylidae), and Anisopteromalus calandrae (Howard) (Hymenoptera: Pteromalidae)] inhabit a temporary, but stable ecosystem with constant environmental conditions. The objective of the present experiment was to assess the efficacy of using ethylene glycol antifreeze in combination with nutrient solutions to monitor storage insect pest and natural enemy populations in three bins of corn, Zea mays L. The treatments were deionized water, a diluted (1:5 antifreeze:water) antifreeze solution, 10% honey, 10% honey in the diluted antifreeze solution, 10% beer in the diluted antifreeze solution, 10% sucrose in the diluted antifreeze solution, and a commercial pheromone trap suspended in a 3.8-liter container filled with 300-ml of diluted antifreeze solution. The seven treatments captured storage insect pests and their natural enemies in the bins at 33-36°C and 51-55% RH. The pheromone trap in the container with the diluted antifreeze captured significantly more P. interpunctella than the other treatments, but a lower percentage (7.6%) of these captures were females compared with the rest of the treatments (\u3e40% females). All trapping solutions also captured Sitophilus spp. and other beetle species, but the captures of the coleopteran pests were not significantly different among the seven treatments (P \u3e 0.05). Two parasitoid wasps also were captured in the study. The number of A. calandrae was different among the seven treatments (P \u3c 0.05), whereas the number of C. tarsalis was not different among the treatments (P \u3e 0.05). Most A. calandrae adults were captured by the 10% honey in the diluted antifreeze, whereas the fewest were captured in the deionized water. Microbial growth was observed in the 10% honey solution, but no microbial growth occurred in the rest of the treatments, including 10% honey in the diluted antifreeze solution. The results of insect captures and microbial growth demonstrated that antifreeze could be used as a part of storage insect monitoring and/or control programs

    Spatial Patterns of Aflatoxin Levels in Relation to Ear-Feeding Insect Damage in Pre-Harvest Corn

    Get PDF
    Key impediments to increased corn yield and quality in the southeastern US coastal plain region are damage by ear-feeding insects and aflatoxin contamination caused by infection of Aspergillus flavus. Key ear-feeding insects are corn earworm, Helicoverpa zea, fall armyworm, Spodoptera frugiperda, maize weevil, Sitophilus zeamais, and brown stink bug, Euschistus servus. In 2006 and 2007, aflatoxin contamination and insect damage were sampled before harvest in three 0.4-hectare corn fields using a grid sampling method. The feeding damage by each of ear/kernel-feeding insects (i.e., corn earworm/fall armyworm damage on the silk/cob, and discoloration of corn kernels by stink bugs), and maize weevil population were assessed at each grid point with five ears. The spatial distribution pattern of aflatoxin contamination was also assessed using the corn samples collected at each sampling point. Aflatoxin level was correlated to the number of maize weevils and stink bug-discolored kernels, but not closely correlated to either husk coverage or corn earworm damage. Contour maps of the maize weevil populations, stink bug-damaged kernels, and aflatoxin levels exhibited an aggregated distribution pattern with a strong edge effect on all three parameters. The separation of silk- and cob-feeding insects from kernel-feeding insects, as well as chewing (i.e., the corn earworm and maize weevil) and piercing-sucking insects (i.e., the stink bugs) and their damage in relation to aflatoxin accumulation is economically important. Both theoretic and applied ramifications of this study were discussed by proposing a hypothesis on the underlying mechanisms of the aggregated distribution patterns and strong edge effect of insect damage and aflatoxin contamination, and by discussing possible management tactics for aflatoxin reduction by proper management of kernel-feeding insects. Future directions on basic and applied research related to aflatoxin contamination are also discussed

    Solar-thermal conversion and steam generation: a review

    Get PDF
    Recently, steam generation systems based on solar-thermal conversion have received much interest, and this may be due to the widespread use of solar energy and water sources such as oceans and lakes. The photo-thermal desalination system becomes attractive as it can convert absorbed solar light energy into thermal energy and realise the desalination and water purification of saline water through the evaporation process. In this paper, the research status of solar-thermal conversion materials such as metal-based materials, semiconductor materials, carbon-base materials, organic polymer materials, composite photo-thermal materials and their solar-thermal conversion mechanism in recent years are reviewed. The physical process and evaluation principle of solar-thermal conversion are both carefully introduced. The methods of optimising thermal management and increasing the evaporation rate of a hybrid system are also introduced in detail. Four main applications of solar-thermal conversion technologies (seawater desalination, wastewater purification, sterilisation and power generation) are discussed. Finally, based on the above analysis, the prospects and challenges for future research in the field of desalination are discussed from an engineering and scientific viewpoint to promote the direction of research, in order to stimulate future development and accelerate commercial application

    Hydrolase and Oxido-Reductase Activities in \u3ci\u3eDiuraphis noxia\u3c/i\u3e and \u3ci\u3eRhopalosiphum padi\u3c/i\u3e (Hemiptera: Aphididae)

    Get PDF
    Four hydrolases and five oxido-reductases were examined using native stacking polyacrylamide gel electrophoresis. Homogenate of Russian wheat aphid, Diuraphis noxia (Mordvilko), bird cherry-oat aphid, Rhopalosiphum padi (L.), Arapahoe (aphid-susceptible) and Halt (aphid-resistant) wheat, Triticum aestivum L., and powdery mildew-infected Erysiphe graminis DC. ex Merat f. sp. tritici Em. Marchal, Arapahoe wheat leaves were assayed for enzyme activities. Pectinesterase, polygalacturonase (or pectinase), cellulase, and amylase activities were examined in the hydrolase group. Catalase, peroxidase, catechol oxidase, superoxide dismutase, and ascorbate oxidase activities were examined in the group of oxido-reductases. The two aphid species had the same hydrolases but different oxido-reductases. Although pectinesterase and cellulase enzymes were present in D. noxia and R. padi, the banding patterns were different. Polygalacturonase and d-amylase were not detected from either aphid species. In the oxido-reductase group, catalase was detected from D. noxia, wheras peroxidase was detected from R. padi. Superoxide dismutase and ascorbate oxidase activities also were detected from both aphids. Enzyme assays using aphid head tissue that included salivary glands but excluded aphid foregut supported the enzyme assays using whole aphids. Peroxidase activity was detected from the salivary tissue of R. padi, but not D. noxia, and catalase activity was detected from D. noxia salivary tissue, but not R. padi. We suggest that the salivary enzyme difference between the 2 aphid species (i.e., catalase and peroxidase) is important in the type of damage symptom formation on susceptible wheat plants

    Genome Size Reversely Correlates With Host Plant Range in Helicoverpa Species

    Get PDF
    In organisms with very low percentages of transposable elements (TEs), genome size may positively or negatively correlate with host range, depending on whether host adaptation or host modification is the main route to host generalism. To test if this holds true for insect herbivores with greater percentages of TEs, we conducted flow cytometry to measure the endopolyploidy levels and C-values of the host modification (salivary gland and mandibular gland in head), host adaptation (midgut), and host use-independent tissues (male gonad, hemolymph, and Malpighian tubules) of the generalist Helicoverpa armigera and the head of its older specialist sister H. assulta. Larval salivary gland displayed a consecutive chain of endopolyploidy particles from 8Cx to higher than 32Cx and larval head and midgut had endopolyploidy nuclei clusters of 16Cx and 32Cx, whereas larval male gonad, hemolymph, and Malpighian tubules possessed no endopolyploidy nuclei of higher than 8Cx. The estimated genome size of the Solanaceae plant specialist H. assulta is 430 Mb, significantly larger than that of its older generalist sister Heliothis virescens (408 Mb) and those of its two generalist descendants H. armigera (394 Mb) and H. zea (363 Mb). These data not only reveal a negative correlation between host plant range and genome size in this terminal lineage, but also imply that Helicoverpa species appear to depend more on host modification than on host adaptation to achieve polyphagy.USDA National Institute of Food and Agriculture [ARZT-1360890-H31-164, ARZT-1370400-R31-168]; National Natural Science Foundation of China [31772164, 31401737, 31171874]; Beijing talents fund [2015000021223ZK29]Open access journalThis item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Oxidative Responses of Resistant and Susceptible Cereal Leaves to Symptomatic and Nonsymptomatic Cereal Aphid (Hemiptera: Aphididae) Feeding

    Get PDF
    The impact of the leaf-chlorosis-eliciting Russian wheat aphid, Diuraphis noxia (Mordvilko), and the nonchlorosis-eliciting bird cherry-oat aphid, Rhopalosiphum padi (L.), feeding on D. noxia-susceptible and -resistant cereals was examined during the period (i.e., 3, 6, and 9 d after aphid infestation) that leaf chlorosis developed. After aphid number, leaf rolling and chlorosis ratings, and fresh leaf weight were recorded on each sampling date, total protein content, peroxidase, catalase, and polyphenol oxidase activities of each plant sample were determined spectrophotometrically. Although R. padi and D. noxia feeding caused significant increase of total protein content in comparison with the control cereal leaves, the difference in total protein content between R. padi and D. noxia-infested leaves was not significant. Although R. padi-feeding did not elicit any changes of peroxidase specific activity in any of the four cereals in comparison with the control leaves, D. noxia feeding elicited greater increases of peroxidase specific activity only on resistant ‘Halt’ wheat (Triticum aestivum L.) and susceptible ‘Morex’ barley (Hordeum vulgare L.), but not on susceptible ‘Arapahoe’ and resistant ‘Border’ oat (Avena sativa L.). D. noxia-feeding elicited a nine-fold increase in peroxidase specific activity on Morex barley and a threefold on Halt wheat 9 d after the initial infestation in comparison with control leaves. Furthermore, D. noxia feeding did not elicit any differential changes of catalase and polyphenol oxidase activities in comparison with either R. padi feeding or control leaves. The findings suggest that D. noxia feeding probably results in oxidative stress in plants. Moderate increase of peroxidase activity (approximately threefold) in resistant Halt compared with susceptible Arapahoe wheat might have contributed to its resistance to D. noxia, whereas the ninefold peroxidase activity increase may have possibly contributed to barley’s susceptibility. Different enzymatic responses in wheat, barley, and oat to D. noxia and R. padi feeding indicate the cereals have different mechanisms of aphid resistance

    Melanaphis sorghi (Hemiptera: Aphididae) Clonal Diversity in the United States and Brazil

    No full text
    Melanaphis sorghi (Hemiptera: Aphididae), are an economically important pest to sorghum in the Americas. Previous studies have found that a super-clone that belongs to multilocus lineage (MLL)-F predominated in the U.S. from 2013 to 2018 and uses multiple hosts besides sorghum. In contrast, previous studies found that aphids in South America belong to MLL-C, but these studies only examined aphids collected from sugarcane. In this study we sought to determine if the superclone persisted in the U.S. in 2019–2020 and to determine the MLL of aphids found on sorghum in the largest country in South America, Brazil. Melanaphis spp. samples (121) were collected from the U.S. in 2019–2020 and Brazil in 2020 and were genotyped with 8–9 Melanaphis spp. microsatellite markers. Genotyping results showed that all samples from the U.S. in 2019 and Brazil in 2020 had alleles identical to the predominant superclone. Of the 52 samples collected in the U.S. in 2020, 50 samples were identical to the predominant super-clone (multilocus lineage-F; M. sorghi), while two samples from Texas differed from the super-clone by a single allele. The results demonstrated that the super-clone remains in the U.S. on sorghum, Johnsongrass, and giant miscanthus and is also present on sorghum within Brazil

    Useful Bicistronic Reporter System for Studying Poly(A) Site-Defining cis Elements and Regulation of Alternative Polyadenylation

    No full text
    The link between polyadenylation (pA) and various biological, behavioral, and pathological events of eukaryotes underlines the need to develop in vivo polyadenylation assay methods for characterization of the cis-acting elements, trans-acting factors and environmental stimuli that affect polyadenylation efficiency and/or relative usage of two alternative polyadenylation (APA) sites. The current protein-based CAT or luciferase reporter systems can measure the polyadenylation efficiency of a single pA site or candidate cis element but not the choice of two APA sites. To address this issue, we developed a set of four new bicistronic reporter vectors that harbor either two luciferase or fluorescence protein open reading frames connected with one Internal Ribosome Entry Site (IRES). Transfection of single or dual insertion constructs of these vectors into mammalian cells demonstrated that they could be utilized not only to quantify the strength of a single candidate pA site or cis element, but also to accurately measure the relative usage of two APA sites at both the mRNA (qRT-PCR) and protein levels. This represents the first reporter system that can study polyadenylation efficiency of a single pA site or element and regulation of two APA sites at both the mRNA and protein levels.United States Department of Agriculture; National Institute of Food and Agriculture [ARZT-1360890-H31-164, ARZT-1370400-R31-168]; Beijing Nova Program [Z15110000 03150118]; Beijing talents fund [2015000021223ZK29]; National Natural Science Foundation of China [31772164, 31401737]Open Access Journal.This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]
    • …
    corecore