2,444 research outputs found

    Characterization and evaluation of Bacillus isolates for their potential plant growth and biocontrol activities against tomato bacterial wilt

    Get PDF
    About 200 Bacillus isolates were isolated from tomato and potato rhizosphere and examined for their antagonistic activities against Ralstonia solanacearum T-91, the causal agent of tomato bacterial wilt (TBW), in vitro and in vivo. Four strains, AM1, D16, D29 and H8, have shown high potential of antagonistic activity against the pathogen in laboratory and greenhouse experiments. In greenhouse, 81.1 to 89.0% reduction of disease incidence of TBW was recorded in treated tomato plants with 4 isolates, which also significantly (p > 0.05) increased plant height by 22.7 to 43.7% and dry weight by 47.93 to 91.55% compared with non-treated control. 16SrRNA gene sequence, the biochemical and physiological tests and fatty acid methyl esters analysis assigned strains AM1 and D29 as Bacillus amyloliquefaciens, while strains D16 and H8 as Bacillus subtilis and B. methylotrophicus, respectively. In addition, the 4 strains showed ability to inhibit growth of the three soil-borne fungi, produce indole-3- acetic acid, siderophores and also with exception of strain D16, the other 3 strains were capable of solubilizing phosphate. Therefore, these results suggest that out of 200 isolates, Bacillus stains AM1, D16, D29 and H8 support good antagonistic activity and could be applied as biocontrol agents against TBW under greenhouse conditions beside their potential to promote tomato plants growth.Key words: Tomato, Ralstonia solanacearum, Bacillus spp, biological control, plant growth promotion activitie

    IFN-gamma is associated with risk of Schistosoma japonicum infection in China.

    No full text
    Before the start of the schistosomiasis transmission season, 129 villagers resident on a Schistosoma japonicum-endemic island in Poyang Lake, Jiangxi Province, 64 of whom were stool-positive for S. japonicum eggs by the Kato method and 65 negative, were treated with praziquantel. Forty-five days later the 93 subjects who presented for follow-up were all stool-negative. Blood samples were collected from all 93 individuals. S. japonicum soluble worm antigen (SWAP) and soluble egg antigen (SEA) stimulated IL-4, IL-5 and IFN-gamma production in whole-blood cultures were measured by ELISA. All the subjects were interviewed nine times during the subsequent transmission season to estimate the intensity of their contact with potentially infective snail habitats, and the subjects were all re-screened for S. japonicum by the Kato method at the end of the transmission season. Fourteen subjects were found to be infected at that time. There was some indication that the risk of infection might be associated with gender (with females being at higher risk) and with the intensity of water contact, and there was evidence that levels of SEA-induced IFN-gamma production were associated with reduced risk of infection

    Assignment Of Opsonic Values To Pneumococcal Reference Serum 007SP For Use In Opsonophagocytic Assays For 13 Serotypes

    Get PDF
    Opsonophagocytic assays (OPAs) are routinely used for assessing the immunogenicity of pneumococcal vaccines, with OPA data often utilized for licensure of new vaccine formulations. However, no reference serum for pneumococcal OPAs is available, making evaluation of data among different laboratories difficult. This international collaboration was initiated to: 1) assign consensus opsonic indexes (OIs) to Pneumococcal Reference Serum Lot 007sp ("007sp") and a panel of calibration sera; and 2) determine if normalization with 007sp decreases the OPA variability among laboratories.To meet these goals, six participating laboratories tested a panel of sera in five runs for 13 serotypes. For each serum, consensus OIs were obtained using a mixed effects ANOVA model. For the calibration sera, normalized consensus values were also determined based on 007sp.For each serotype, the overall reduction in inter-laboratory variability was calculated by comparing the coefficients of variation of the unadjusted and the normalized values. Normalization of the results substantially reduced the inter-laboratory variability, ranging from a 15% reduction in variability for serotype 9V to 64% for serotype 7F. Normalization also increased the proportion of data within 2-fold of the consensus value from approximately 70% (average of all serotypes) to >90%.Based on the data obtained in this study, Pneumococcal Reference Standard Lot 007sp will likely be a useful reagent for normalizing pneumococcal OPA results from different laboratories. The data also support the use of the 16 FDA OPA calibration sera as part of the initial evaluation of new assays or periodic assessment of established assays

    GLP-1 receptor signalling promotes β-cell glucose metabolism via mTOR-dependent HIF-1α activation

    Get PDF
    Glucagon-like peptide-1 (GLP-1) promotes insulin secretion from pancreatic ß-cells in a glucose dependent manner. Several pathways mediate this action by rapid, kinase phosphorylation-dependent, but gene expression-independent mechanisms. Since GLP-1-induced insulin secretion requires glucose metabolism, we aimed to address the hypothesis that GLP-1 receptor (GLP-1R) signalling can modulate glucose uptake and utilization in ß-cells. We have assessed various metabolic parameters after short and long exposure of clonal BRIN-BD11 ß-cells and rodent islets to the GLP-1R agonist Exendin-4 (50 nM). Here we report for the first time that prolonged stimulation of the GLP-1R for 18 hours promotes metabolic reprogramming of ß-cells. This is evidenced by up-regulation of glycolytic enzyme expression, increased rates of glucose uptake and consumption, as well as augmented ATP content, insulin secretion and glycolytic flux after removal of Exendin-4. In our model, depletion of Hypoxia-Inducible Factor 1 alpha (HIF-1a) impaired the effects of Exendin-4 on glucose metabolism, while pharmacological inhibition of Phosphoinositide 3-kinase (PI3K) or mTOR completely abolished such effects. Considering the central role of glucose catabolism for stimulus-secretion coupling in ß-cells, our findings suggest that chronic GLP-1 actions on insulin secretion include elevated ß-cell glucose metabolism. Moreover, our data reveal novel aspects of GLP-1 stimulated insulin secretion involving de novo gene expression

    Gene and protein expression of glucose transporter 1 and glucose transporter 3 in human laryngeal cancer—the relationship with regulatory hypoxia-inducible factor-1α expression, tumor invasiveness, and patient prognosis

    Get PDF
    Increased glucose uptake mediated by glucose transporters and reliance on glycolysis are common features of malignant cells. Hypoxia-inducible factor-1α supports the adaptation of hypoxic cells by inducing genes related to glucose metabolism. The contribution of glucose transporter (GLUT) and hypoxia-inducible factor-1α (HIF-1α) activity to tumor behavior and their prognostic value in head and neck cancers remains unclear. The aim of this study was to examine the predictive value of GLUT1, GLUT3, and HIF-1α messenger RNA (mRNA)/protein expression as markers of tumor aggressiveness and prognosis in laryngeal cancer. The level of hypoxia/metabolic marker genes was determined in 106 squamous cell laryngeal cancer (SCC) and 73 noncancerous matched mucosa (NCM) controls using quantitative realtime PCR. The related protein levels were analyzed by Western blot. Positive expression of SLC2A1, SLC2A3, and HIF-1α genes was noted in 83.9, 82.1, and 71.7 % of SCC specimens and in 34.4, 59.4, and 62.5 % of laryngeal cancer samples. Higher levels of mRNA/protein for GLUT1 and HIF-1α were noted in SCC compared to NCM (p<0.05). SLC2A1 was found to have a positive relationship with grade, tumor front grading (TFG) score, and depth and mode of invasion (p<0.05). SLC2A3 was related to grade and invasion type (p<0.05). There were also relationships of HIF-1α with pTNM, TFG scale, invasion depth and mode, tumor recurrences, and overall survival (p<0.05). In addition, more advanced tumors were found to be more likely to demonstrate positive expression of these proteins. In conclusion, the hypoxia/metabolic markers studied could be used as molecular markers of tumor invasiveness in laryngeal cancer.This work was supported, in part, by the statutory fund of the Department of Cytobiochemistry, University of Łódź, Poland (506/811), and by grant fromtheNational Science Council, Poland (N403 043 32/2326)

    Modeling recursive RNA interference.

    Get PDF
    An important application of the RNA interference (RNAi) pathway is its use as a small RNA-based regulatory system commonly exploited to suppress expression of target genes to test their function in vivo. In several published experiments, RNAi has been used to inactivate components of the RNAi pathway itself, a procedure termed recursive RNAi in this report. The theoretical basis of recursive RNAi is unclear since the procedure could potentially be self-defeating, and in practice the effectiveness of recursive RNAi in published experiments is highly variable. A mathematical model for recursive RNAi was developed and used to investigate the range of conditions under which the procedure should be effective. The model predicts that the effectiveness of recursive RNAi is strongly dependent on the efficacy of RNAi at knocking down target gene expression. This efficacy is known to vary highly between different cell types, and comparison of the model predictions to published experimental data suggests that variation in RNAi efficacy may be the main cause of discrepancies between published recursive RNAi experiments in different organisms. The model suggests potential ways to optimize the effectiveness of recursive RNAi both for screening of RNAi components as well as for improved temporal control of gene expression in switch off-switch on experiments

    A novel isolator-based system promotes viability of human embryos during laboratory processing

    Get PDF
    In vitro fertilisation (IVF) and related technologies are arguably the most challenging of all cell culture applications. The starting material is a single cell from which one aims to produce an embryo capable of establishing a pregnancy eventually leading to a live birth. Laboratory processing during IVF treatment requires open manipulations of gametes and embryos, which typically involves exposure to ambient conditions. To reduce the risk of cellular stress, we have developed a totally enclosed system of interlinked isolator-based workstations designed to maintain oocytes and embryos in a physiological environment throughout the IVF process. Comparison of clinical and laboratory data before and after the introduction of the new system revealed that significantly more embryos developed to the blastocyst stage in the enclosed isolator-based system compared with conventional open-fronted laminar flow hoods. Moreover, blastocysts produced in the isolator-based system contained significantly more cells and their development was accelerated. Consistent with this, the introduction of the enclosed system was accompanied by a significant increase in the clinical pregnancy rate and in the proportion of embryos implanting following transfer to the uterus. The data indicate that protection from ambient conditions promotes improved development of human embryos. Importantly, we found that it was entirely feasible to conduct all IVF-related procedures in the isolator-based workstations

    A Minimal Model of Metabolism Based Chemotaxis

    Get PDF
    Since the pioneering work by Julius Adler in the 1960's, bacterial chemotaxis has been predominantly studied as metabolism-independent. All available simulation models of bacterial chemotaxis endorse this assumption. Recent studies have shown, however, that many metabolism-dependent chemotactic patterns occur in bacteria. We hereby present the simplest artificial protocell model capable of performing metabolism-based chemotaxis. The model serves as a proof of concept to show how even the simplest metabolism can sustain chemotactic patterns of varying sophistication. It also reproduces a set of phenomena that have recently attracted attention on bacterial chemotaxis and provides insights about alternative mechanisms that could instantiate them. We conclude that relaxing the metabolism-independent assumption provides important theoretical advances, forces us to rethink some established pre-conceptions and may help us better understand unexplored and poorly understood aspects of bacterial chemotaxis
    corecore