75 research outputs found

    Rapid Transfer Alignment of SINS with Measurement Packet Dropping based on a Novel Suboptimal Estimator

    Get PDF
    Transfer alignment (TA) is an important step for strapdown inertial navigation system (SINS) starting from a moving base, which utilises the information proposed from the higher accurate and well performed master inertial navigation system. But the information is often delayed or even lost in real application, which will seriously affect the accuracy of TA. This paper models the stochastic measurement packet dropping as an independent identically distributed (IID) Bernoulli random process, and introduces it into the measurement equation of rapid TA, and the influence of measurement packet dropping is analysed. Then, it presents a suboptimal estimator for the estimation of the misalignment in TA considering the random arrival of the measurement packet. Simulation has been done for the performance comparison about the suboptimal estimator, standard Kalman filter and minimum mean squared estimator. The results show that the suboptimal estimator has better performance, which can achieve the best TA accuracy

    Defect Analysis in Microgroove Machining of Nickel-Phosphide Plating by Small Cross-Angle Microgrooving

    Get PDF
    Crystalline nickel-phosphide (c-Ni-P) plating is a newly developed mold material for precision glass molding (PGM) to fabricate microgrooves. In the ultraprecision cutting process of the c-Ni-P plating material, the neighboring microgrooves are required to adjoin with each other to ensure acute microgroove ridges and miniaturize the microgroove size. Generally, defects of burrs and fracture pits can easily occur on the ridges when the plating layer is grooved. Burrs appear when tears dominate in material removal with a large adjacent amount. With the change of the adjacent amount, the removed material is sheared out from the workpiece, and when the cutting depth of the groove ridge is over the brittle-ductile transition thickness, fracture pits arise. To restrict these defects, a small cross-angle microgrooving method is proposed to test the critical adjacent amount range efficiently. It is found that an acute ridge of the microgroove is formed with a small enough adjacent amount; when this amount is in the range of 570 nm~720 nm in the microgroove machining process, fracture pits begin to arise on the gradient edge. High-quality microgrooves can be obtained based on this methodology

    Gpr124 is essential for blood-brain barrier integrity in central nervous system disease

    Get PDF
    Although blood-brain barrier (BBB) compromise is central to the etiology of diverse central nervous system (CNS) disorders, endothelial receptor proteins that control BBB function are poorly defined. The endothelial G-protein-coupled receptor (GPCR) Gpr124 has been reported to be required for normal forebrain angiogenesis and BBB function in mouse embryos, but the role of this receptor in adult animals is unknown. Here Gpr124 conditional knockout (CKO) in the endothelia of adult mice did not affect homeostatic BBB integrity, but resulted in BBB disruption and microvascular hemorrhage in mouse models of both ischemic stroke and glioblastoma, accompanied by reduced cerebrovascular canonical Wnt-β-catenin signaling. Constitutive activation of Wnt-β-catenin signaling fully corrected the BBB disruption and hemorrhage defects of Gpr124-CKO mice, with rescue of the endothelial gene tight junction, pericyte coverage and extracellular-matrix deficits. We thus identify Gpr124 as an endothelial GPCR specifically required for endothelial Wnt signaling and BBB integrity under pathological conditions in adult mice. This finding implicates Gpr124 as a potential therapeutic target for human CNS disorders characterized by BBB disruption

    Untangling the chemical evolution of Titan's atmosphere and surface–from homogeneous to heterogeneous chemistry

    Full text link
    The arrival of the Cassini-Huygens probe at Saturn's moon Titan - the only Solar System body besides Earth and Venus with a solid surface and a thick atmosphere with a pressure of 1.4 atm at surface level - in 2004 opened up a new chapter in the history of Solar System exploration. The mission revealed Titan as a world with striking Earth-like landscapes involving hydrocarbon lakes and seas as well as sand dunes and lava-like features interspersed with craters and icy mountains of hitherto unknown chemical composition. The discovery of a dynamic atmosphere and active weather system illustrates further the similarities between Titan and Earth. The aerosol-based haze layers, which give Titan its orange-brownish color, are not only Titan's most prominent optically visible features, but also play a crucial role in determining Titan's thermal structure and chemistry. These smog-like haze layers are thought to be very similar to those that were present in Earth's atmosphere before life developed more than 3.8 billion years ago, absorbing the destructive ultraviolet radiation from the Sun, thus acting as 'prebiotic ozone' to preserve astrobiologically important molecules on Titan. Compared to Earth, Titan's low surface temperature of 94 K and the absence of liquid water preclude the evolution of biological chemistry as we know it. Exactly because of these low temperatures, Titan provides us with a unique prebiotic 'atmospheric laboratory' yielding vital clues - at the frozen stage - on the likely chemical composition of the atmosphere of the primitive Earth. However, the underlying chemical processes, which initiate the haze formation from simple molecules, have been not understood well to date

    Acupuncture Improves the Facial Muscular Function in a Case of Facioscapulohumeral Muscular Dystrophy

    No full text
    Facioscapulohumeral muscular dystrophy (FSHD) is a genetic muscle disorder in which muscles of the face, shoulder blades, and upper arms develop gradual and progressive weakness. There is no effective pharmacological treatment currently available for this disorder so far. We had an opportunity to treat a patient with FSHD using acupuncture. The patient was a 62-year-old female, who presented to us with symptoms such as weakness in her eyes, mouth, shoulder, and upper and lower limbs. Muscle atrophy could be found in multiple areas in her body including her face, shoulder, arm, chest, and lower limbs. Her diagnosis of FSHD muscular dystrophy was established a few years ago and was later genetically confirmed. After a long treatment course of about 10 months with acupuncture, this patient showed a significant restoration of her facial muscle function. However, acupuncture did not improve the function of other muscle groups. The potential mechanism that acupuncture improved the facial function but not the other muscles needs to be further investigated. Keywords: acupuncture, facial muscle, facioscapulohumeral muscular dystrophy, treatmen

    A Review of the Precision Glass Molding of Chalcogenide Glass (ChG) for Infrared Optics

    No full text
    Chalcogenide glass (ChG) is increasingly demanded in infrared optical systems owing to its excellent infrared optical properties. ChG infrared optics including ChG aspherical and freeform optics are mainly fabricated using the single point diamond turning (SPDT) technique, which is characterized by high cost and low efficiency. This paper presents an overview of the ChG infrared optics fabrication technique through precision glass molding (PGM). It introduces the thermo-mechanical properties of ChG and models the elastic-viscoplasticity constitutive of ChG. The forming accuracy and surface defects of the formed ChG are discussed, and the countermeasures to improve the optics quality are also reviewed. Moreover, the latest advancements in ChG precision molding are detailed, including the aspherical lens molding process, the ChG freeform optics molding process, and some new improvements in PGM

    Multi-Indicator Early-Warning Model for Mine Water Inrush at the Yushen Mining Area, Shaanxi Province, China

    No full text
    Previously conducted studies have established that the early warning of water inrush is crucial for the prevention and control of mining water catastrophes in the panel. In order to ensure the safety of coal mining, in this paper, monitoring indicators were determined using the sensitivity analysis method, and then a multi-indicator early-warning model for water inrush was established mainly based on the geological data of the Yanghuopan coal mine. The monitoring stage of the early-warning model should be determined according to the distance between the monitoring borehole and the mining position. Then, the development of a water-conducting fracture zone and the fluctuation and stochastic oscillator of monitoring indicators are comprehensively analyzed to determine the early-warning level. A multi-indicator early-warning model was applied to panel 30302 of the Yanghuopan coal mine and panel 1304 of the Zhaoxian coal mine in the Yushen mining areas. The abnormal warning of the water disaster in panel 1304 was sent 3 days before the disaster, which shows the effectiveness of the model. It can provide a reference for the development of an early-warning model for mine water inrush in Yushen mining areas
    • …
    corecore