65 research outputs found

    Effect of chromatic dispersion induced chirp on the temporal coherence property of individual beam from spontaneous four wave mixing

    Full text link
    Temporal coherence of individual signal or idler beam, determined by the spectral correlation property of photon pairs, is important for realizing quantum interference among independent sources. To understand the effect of chirp on the temporal coherence property, two series of experiments are investigated by introducing different amount of chirp into either the pulsed pump or individual signal (idler) beam. In the first one, based on spontaneous four wave mixing in a piece of optical fiber, the intensity correlation function of the filtered individual signal beam, which characterizes the degree of temporal coherence, is measured as a function of the chirp of pump. The results demonstrate that the chirp of pump pulses decreases the degree of temporal coherence. In the second one, a Hong-Ou-Mandel type two-photon interference experiment with the signal beams generated in two different fibers is carried out. The results illustrate that the chirp of individual beam does not change the temporal coherence degree, but affect the temporal mode matching. To achieve high visibility, apart from improving the coherence degree by minimizing the chirp of pump, mode matching should be optimized by managing the chirps of individual beams.Comment: 17pages, 4figure

    An all fiber source of frequency entangled photon pairs

    Full text link
    We present an all fiber source of frequency entangled photon pairs by using four wave mixing in a Sagnac fiber loop. Special care is taken to suppress the impurity of the frequency entanglement by cooling the fiber and by matching the polarization modes of the photon pairs counter-propagating in the fiber loop. Coincidence detection of signal and idler photons, which are created in pair and in different spatial modes of the fiber loop, shows the quantum interference in the form of spatial beating, while the single counts of the individual signal (idler) photons keep constant. When the production rate of photon pairs is about 0.013 pairs/pulse, the envelope of the quantum interference reveals a visibility of (95±2)(95\pm 2)%, which is close to the calculated theoretical limit 97.4%Comment: 11 pages, 6 figures, to appear in Phys. Rev.

    Spectral study of photon pairs generated in dispersion shifted fiber with a pulsed pump

    Get PDF
    Spectral correlation of photon pairs generated in dispersion shifted fiber by a pulsed pump is theoretically analyzed and experimentally investigated. We first calculate the spectral function of photon pairs according to the deduced two-photon state generated by spontaneous four wave mixing under the assumptions close to the real experimental conditions. We then experimentally study the spectral property of the signal and idler photon pairs generated in optical fiber by photon correlation measurements, and the experimental results agree with the calculation. The investigation is useful for developing fiber-based sources of entangled photon pairs and for studying multi-photon quantum interference with multiple photon pairs

    Quantum efficiency measurement of single photon detectors using photon pairs generated in optical fibers

    Full text link
    Using the correlated signal and idler photon pairs generated in a dispersion shifted fiber by a pulsed pump, we measure the quantum efficiency of a InGaAs/InP avalanche photodiode-based single photon detector. Since the collection efficiency of photon pairs is a key parameter to correctly deduce the quantum efficiency, we carefully characterize the collection efficiency by studying correlation dependence of photon pairs upon the spectra of pump, signal and idler photons. This study allows us to obtain quantum efficiency of the single photon detector by using photon pairs with various kinds of bandwidths.Comment: 21pages, 6figures, 4tables, accepted for publication in J. Opt. Soc. Am.

    Pruning random resistive memory for optimizing analogue AI

    Full text link
    The rapid advancement of artificial intelligence (AI) has been marked by the large language models exhibiting human-like intelligence. However, these models also present unprecedented challenges to energy consumption and environmental sustainability. One promising solution is to revisit analogue computing, a technique that predates digital computing and exploits emerging analogue electronic devices, such as resistive memory, which features in-memory computing, high scalability, and nonvolatility. However, analogue computing still faces the same challenges as before: programming nonidealities and expensive programming due to the underlying devices physics. Here, we report a universal solution, software-hardware co-design using structural plasticity-inspired edge pruning to optimize the topology of a randomly weighted analogue resistive memory neural network. Software-wise, the topology of a randomly weighted neural network is optimized by pruning connections rather than precisely tuning resistive memory weights. Hardware-wise, we reveal the physical origin of the programming stochasticity using transmission electron microscopy, which is leveraged for large-scale and low-cost implementation of an overparameterized random neural network containing high-performance sub-networks. We implemented the co-design on a 40nm 256K resistive memory macro, observing 17.3% and 19.9% accuracy improvements in image and audio classification on FashionMNIST and Spoken digits datasets, as well as 9.8% (2%) improvement in PR (ROC) in image segmentation on DRIVE datasets, respectively. This is accompanied by 82.1%, 51.2%, and 99.8% improvement in energy efficiency thanks to analogue in-memory computing. By embracing the intrinsic stochasticity and in-memory computing, this work may solve the biggest obstacle of analogue computing systems and thus unleash their immense potential for next-generation AI hardware

    Focus on vulnerable populations and promoting equity in health service utilization ––an analysis of visitor characteristics and service utilization of the Chinese community health service

    Get PDF
    Background Community health service in China is designed to provide a convenient and affordable primary health service for the city residents, and to promote health equity. Based on data from a large national study of 35 cities across China, we examined the characteristics of the patients and the utilization of community health institutions (CHIs), and assessed the role of community health service in promoting equity in health service utilization for community residents. Methods Multistage sampling method was applied to select 35 cities in China. Four CHIs were randomly chosen in every district of the 35 cities. A total of 88,482 visitors to the selected CHIs were investigated by using intercept survey method at the exit of the CHIs in 2008, 2009, 2010, and 2011. Descriptive analyses were used to analyze the main characteristics (gender, age, and income) of the CHI visitors, and the results were compared with that from the National Health Services Survey (NHSS, including CHIs and higher levels of hospitals). We also analyzed the service utilization and the satisfactions of the CHI visitors. Results The proportions of the children (2.4%) and the elderly (about 22.7%) were lower in our survey than those in NHSS (9.8% and 38.8% respectively). The proportion of the low-income group (26.4%) was apparently higher than that in NHSS (12.5%). The children group had the lowest satisfaction with the CHIs than other age groups. The satisfaction of the low-income visitors was slightly higher than that of the higher-income visitors. The utilization rate of public health services was low in CHIs. Conclusions The CHIs in China appears to fulfill the public health target of uptake by vulnerable populations, and may play an important role in promoting equity in health service utilization. However, services for children and the elderly should be strengthened

    Mixed optimization method in design of FC-2

    No full text
    The mixed optimization method proposed in this paper combines analysis of multi-level protocols with extraction of single-level protocol flow chart to design the accelerating hardware to improve the performance of FC-2. We implement the accelerating hardware with 0.18 CMOS standard technology. Compared with the Frame Based design method, the proposed method can improve the performance by 4.5 times in normal communication and even more when encountering error sequences with the 2.8 times area of the Frame Based one.Engineering, Electrical & ElectronicEICPCI-S(ISTP)

    Preparation and Performance of AgNWs/PDMS Film-Based Flexible Strain Sensor

    No full text
    Flexible strain sensors are widely used in the fields of personal electronic equipment and health monitoring to promote the rapid development of modern social science and technology. In this paper, silver nanowires (AgNWs) prepared via the polyol reduction method were used to construct a flexible strain sensor. The AgNWs/PDMS film was obtained by transfer printing using AgNWs as a conductive layer and polydimethylsiloxane (PDMS) as a flexible substrate. The morphology of AgNWs was characterized by SEM and TEM. The aspect ratio of the AgNWs was more than 700. The strain sensitivity factor of the sensor was 2.8757, with a good linear relationship between the resistance and the strain. Moreover, the strain sensor showed good response results in human activity monitoring and the LED lamp response test, which provides a new idea for the construction of flexible wearable devices
    • …
    corecore