104 research outputs found
Uncertainty evaluation of multilateration-based geometric error measurement considering the repeatibility of positioning of the machine tool
The sequential multilateration principle is often adopted in geometric error measurement of CNC machine tools. To identify the geometric errors, a single laser tracker is placed at different positions to measure the length between the target point and the laser tracker. However, the measurement of each laser tracker position is not simultaneous and measurement accuracy is mainly subject to positioning repeatability of the machine tool. This paper attempts to evaluate the measurement uncertainty of geometric errors caused by the positioning repeatability of the machine tool and the laser tracker spatial length measurement error based on the Monte Carlo method. Firstly, a direct identification method for geometric errors of CNC machine tools based on geometric error evaluation constraints is introduced, combined with the geometric error model of a three-axis machine tool. Moreover, uncertainty contributors caused by the repeatability of positioning of numerically controlled axes of the machine tool and the laser length measurement error are analyzed. The measurement uncertainty of the geometric error and the volumetric positioning error is evaluated with the Monte Carlo method. Finally, geometric error measurement and verification experiments are conducted. The results show that the maximum volumetric positioning error of the machine tool is 84.1 μm and the expanded uncertainty is 5.8 μm (�� = 2). The correctness of the geometric error measurement and uncertainty evaluation method proposed in this paper is verified compared with the direct geometric error measurement methods
Three-phase boost-stage coupled current source inverter concept and its space vector modulation
The current source inverter (CSI) is essentially a converter with inherent boost capability and has been preliminarily applied in the field of renewable energy generation systems. However, conventional CSIs are mostly operated independently. Several existing multilevel CSI topologies entirely rely on parallel combinations, which seems to be not very suitable for capacity expansion. To solve this issue, this paper proposes a concept of three-phase boost-stage coupled current source inverter (BSC-CSI) through the duality principle, which can output multi-level currents with a reduced number of switches as well as hardware costs. Compared with the state-of-the-art CSIs, the proposed BSC-CSI can notably simplify the implementation of the multi-level modulation scheme and meanwhile ensure the power devices switch under lower current stress. To further take full advantage of the modularity and scalability, the BSC-CSI can be constructed by hybrid using silicon-carbide (SiC) and silicon (Si) based semiconductor switches for improving efficiency. The experimental results have verified the theoretical findings
A framework for establishing constraint Jacobian matrices of planar rigid-flexible-multibody systems
Constraint violation correction is an important research topic in solving multibody system dynamics. For a multibody system dynamics method which derives acceleration equations in a recursive manner and avoids overall dynamics equations, a fast and accurate solution to the violation problem is paramount. The direct correction method is favored due to its simplicity, high accuracy and low computational cost. This method directly supplements the constraint equations and performs corrections, making it an effective solution for addressing violation problems. However, calculating the significant Jacobian matrices for this method using dynamics equations can be challenging, especially for complex multibody systems. This paper presents a programmatic framework for deriving Jacobian matrices of planar rigid-flexible-multibody systems in a simple semi-analytic form along two paths separated by a secondary joint. The approach is verified by comparing constraint violation errors with and without the constraint violation correction in numerical examples. Moreover, the proposed method's computational speed is compared with that of the direct differential solution, verifying its efficiency. The straightforward, highly programmable and universal approach provides a new idea for programming large-scale dynamics software and extends the application of dynamics methods focused on deriving acceleration equations
Super-diffusion affected by hydrofacies mean length and source geometry in alluvial settings
Dissolved-phase contaminants experiencing enhanced diffusion (i.e., “super-diffusion”) with a pronounced leading plume edge can pose risk for groundwater quality. The drivers for complex super-diffusion in geological media, however, are not fully understood. This study investigates the impacts of hydrofacies’ mean lengths and the initial source geometry, motivated by a hydrofacies model built recently for the well-known MADE aquifer, on the spatial pattern of super-diffusion for two-dimensional alluvial aquifer systems. Monte Carlo simulations show that the bimodal velocity distribution, whose pattern is affected by the hydrofacies’ mean lengths, leads to super-diffusion of solutes with a bi-peak plume snapshot in alluvial settings where advection dominates transport. A larger longitudinal mean length (i.e., width) for hydrofacies with high hydraulic conductivity (K) enhances the connectivity of preferential pathways, resulting in higher values in the bimodal velocity distribution and an enhanced leading front for the bi-peak plume snapshot, while the opposite impact is identified for the hydrofacies’ vertical mean length (i.e., thickness) on the bi-peak super-diffusion. A multi-domain non-local transport model is then proposed, extending upon the concept of the distributed-order fractional derivative, to quantify the evolution of bi-peak super-diffusion due to differential advection and mobile-mobile mass exchange for solute particles moving in hydrofacies with distinct K. Results show that the bi-peak super-diffusion identified for the MADE site and perhaps the other similar aquifers, which is affected by the initial source geometry at an early stage and the thickness and width of high-K hydrofacies during all stages, can be quantified by the mobile-mobile fractional-derivative model. Porous medium dimensionality and stochastic model comparison are also discussed to further explore the nature of bi-peak super-diffusion in alluvial systems
ADAR2 increases in exercised heart and protects against myocardial infarction and doxorubicin-induced cardiotoxicity
Exercise training benefits the heart. The knowledge of post-transcription regulation, especially RNA editing, in hearts remain rare. ADAR2 is an enzyme that edits adenosine to inosine nucleotides in double-stranded RNA, and RNA editing is associated with many human diseases. We found that ADAR2 was upregulated in hearts during exercise training. AAV9-mediated cardiac-specific ADAR2 overexpression attenuated acute myocardial infarction (AMI), MI remodeling, and doxorubicin (DOX)-induced cardiotoxicity. In vitro, overexpression of ADAR2 inhibited DOX-induced cardiomyocyte (CM) apoptosis. but it could also induce neonatal rat CM proliferation. Mechanistically, ADAR2 could regulate the abundance of mature miR-34a in CMs. Regulations of miR-34a or its target genes (Sirt1, Cyclin D1, and Bcl2) could affect the pro-proliferation and anti-apoptosis effects of ADAR2 on CMs. These data demonstrated that exercise-induced ADAR2 protects the heart from MI and DOX-induced cardiotoxicity. Our work suggests that ADAR2 overexpression or a post-transcriptional associated RNA editing via ADAR2 may be a promising therapeutic strategy for heart diseases
Carbon Monitor Cities, near-real-time daily estimates of CO2 emissions from 1500 cities worldwide
Building on near-real-time and spatially explicit estimates of daily carbon
dioxide (CO2) emissions, here we present and analyze a new city-level dataset
of fossil fuel and cement emissions. Carbon Monitor Cities provides daily,
city-level estimates of emissions from January 2019 through December 2021 for
1500 cities in 46 countries, and disaggregates five sectors: power generation,
residential (buildings), industry, ground transportation, and aviation. The
goal of this dataset is to improve the timeliness and temporal resolution of
city-level emission inventories and includes estimates for both functional
urban areas and city administrative areas that are consistent with global and
regional totals. Comparisons with other datasets (i.e. CEADs, MEIC, Vulcan, and
CDP) were performed, and we estimate the overall uncertainty to be 21.7%.
Carbon Monitor Cities is a near-real-time, city-level emission dataset that
includes cities around the world, including the first estimates for many cities
in low-income countries
Phylogenetic and Pathotypical Analysis of Two Virulent Newcastle Disease Viruses Isolated from Domestic Ducks in China
Two velogenic Newcastle disease viruses (NDV) obtained from outbreaks in domestic ducks in China were characterized in this study. Phylogenetic analysis revealed that both strains clustered with the class II viruses, with one phylogenetically close to the genotype VII NDVs and the other closer to genotype IX. The deduced amino acid sequence of the cleavage site of the fusion (F) protein confirmed that both isolates contained the virulent motif 112RRQK/RRF117 at the cleavage site. The two NDVs had severe pathogenicity in fully susceptible chickens, resulting in 100% mortality. One of the isolates also demonstrated some pathogenicity in domestic ducks. The present study suggests that more than one genotype of NDV circulates in domestic ducks in China and viral transmission may occur among chickens and domestic ducks
Aridity-driven shift in biodiversity–soil multifunctionality relationships
From Springer Nature via Jisc Publications RouterHistory: received 2021-01-07, accepted 2021-08-12, registration 2021-08-25, pub-electronic 2021-09-09, online 2021-09-09, collection 2021-12Publication status: PublishedFunder: National Natural Science Foundation of China (National Science Foundation of China); doi: https://doi.org/10.13039/501100001809; Grant(s): 31770430Abstract: Relationships between biodiversity and multiple ecosystem functions (that is, ecosystem multifunctionality) are context-dependent. Both plant and soil microbial diversity have been reported to regulate ecosystem multifunctionality, but how their relative importance varies along environmental gradients remains poorly understood. Here, we relate plant and microbial diversity to soil multifunctionality across 130 dryland sites along a 4,000 km aridity gradient in northern China. Our results show a strong positive association between plant species richness and soil multifunctionality in less arid regions, whereas microbial diversity, in particular of fungi, is positively associated with multifunctionality in more arid regions. This shift in the relationships between plant or microbial diversity and soil multifunctionality occur at an aridity level of ∼0.8, the boundary between semiarid and arid climates, which is predicted to advance geographically ∼28% by the end of the current century. Our study highlights that biodiversity loss of plants and soil microorganisms may have especially strong consequences under low and high aridity conditions, respectively, which calls for climate-specific biodiversity conservation strategies to mitigate the effects of aridification
- …