31 research outputs found

    The trans-ancestral genomic architecture of glycemic traits

    Get PDF
    Glycemic traits are used to diagnose and monitor type 2 diabetes and cardiometabolic health. To date, most genetic studies of glycemic traits have focused on individuals of European ancestry. Here we aggregated genome-wide association studies comprising up to 281,416 individuals without diabetes (30% non-European ancestry) for whom fasting glucose, 2-h glucose after an oral glucose challenge, glycated hemoglobin and fasting insulin data were available. Trans-ancestry and single-ancestry meta-analyses identified 242 loci (99 novel; P < 5 x 10(-8)), 80% of which had no significant evidence of between-ancestry heterogeneity. Analyses restricted to individuals of European ancestry with equivalent sample size would have led to 24 fewer new loci. Compared with single-ancestry analyses, equivalent-sized trans-ancestry fine-mapping reduced the number of estimated variants in 99% credible sets by a median of 37.5%. Genomic-feature, gene-expression and gene-set analyses revealed distinct biological signatures for each trait, highlighting different underlying biological pathways. Our results increase our understanding of diabetes pathophysiology by using trans-ancestry studies for improved power and resolution. A trans-ancestry meta-analysis of GWAS of glycemic traits in up to 281,416 individuals identifies 99 novel loci, of which one quarter was found due to the multi-ancestry approach, which also improves fine-mapping of credible variant sets.Peer reviewe

    Preparation of LiFePO<sub>4</sub>/C Cathode Materials via a Green Synthesis Route for Lithium-Ion Battery Applications

    No full text
    In this work, LiFePO4/C composite were synthesized via a green route by using Iron (III) oxide (Fe2O3) nanoparticles, Lithium carbonate (Li2CO3), glucose powder and phosphoric acid (H3PO4) solution as raw materials. The reaction principles for the synthesis of LiFePO4/C composite were analyzed, suggesting that almost no wastewater and air polluted gases are discharged into the environment. The morphological, structural and compositional properties of the LiFePO4/C composite were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), Raman and X-ray photoelectron spectroscopy (XPS) spectra coupled with thermogravimetry/Differential scanning calorimetry (TG/DSC) thermal analysis in detail. Lithium-ion batteries using such LiFePO4/C composite as cathode materials, where the loading level is 2.2 mg/cm2, exhibited excellent electrochemical performances, with a discharge capability of 161 mA h/g at 0.1 C, 119 mA h/g at 10 C and 93 mA h/g at 20 C, and a cycling stability with 98.0% capacity retention at 1 C after 100 cycles and 95.1% at 5 C after 200 cycles. These results provide a valuable approach to reduce the manufacturing costs of LiFePO4/C cathode materials due to the reduced process for the polluted exhaust purification and wastewater treatment

    Determination of the number of ψ(3686)\psi(3686) events at BESIII

    No full text
    The numbers of ψ(3686) events accumulated by the BESIII detector for the data taken during 2009 and 2012 are determined to be and , respectively, by counting inclusive hadronic events, where the uncertainties are systematic and the statistical uncertainties are negligible. The number of events for the sample taken in 2009 is consistent with that of the previous measurement. The total number of ψ(3686) events for the two data taking periods is
    corecore