145 research outputs found

    "Chameleon" Macromolecules: Synthesis, Structures and Applications of Stimulus Responsive Polymers

    Get PDF
    This thesis describes the preparation and characterization of addressable\ud responsive polymer structures and their versatile applications. Stimuli responsive polymer chains including temperature responsive poly(N-isopropylacrylamide), PNIPAM, pH responsive poly(methacrylic acid), PMAA and redox responsive poly(ferrocenylsilane) PFS can be assembled into various functional polymer architectures such as polymer grafts on surfaces by “grafting to” and “grafting from” approaches and polymer networks in bulk including macroscopic hydrogels and microgels/nanogels systems

    Surface Treatment Effects on the Mechanical Properties of Silica Carbon Black Reinforced Natural Rubber/Butadiene Rubber Composites

    Get PDF
    For the first time, phenolic formaldehyde resin (PF)-treated silica carbon black (SiCB) were prepared with different treatment conditions and their effect as fillers on the mechanical properties of filler filled natural rubber/butadiene rubber (NR/BR) composites were investigated in detail. The PF coating layer on the SiCB derived from rusk husk not only promoted the dispersion of the fillers but also improved the interfacial interactions between fillers and the rubber matrix. As a result, both the cross-link density and mechanical properties of the obtained composites were effectively enhanced. The filler SiCB with 3 wt % PF surface treatment greatly improved the tensile strength of NR/BR composites and reached 7.1 MPa, which increased by 73.7% compared with that of SiCB-filled NR/BR composites. The improved interfacial interactions promoted higher energy dissipation, leading to simultaneously enhancing the glass transition temperature of the obtained composites. Due to the easy processing and low cost of filler as well as the effectively enhanced mechanical properties of composites, the PF-coating methodology has a great potential for practical applications in SiCB reinforced high-performance composites. A commercial filler, carbon black (N774), was also used in this study and evaluated under the same conditions for comparison

    Collapse from the top: Brushes of poly(N-isopropylacrylamide) in co-nonsolvent mixtures

    Get PDF
    Using a combination of ellipsometry and friction force microscopy, we study the reversible swelling, collapse and variation in friction properties of covalently bound poly(N-isopropylacrylamide) (PNIPAM) layers on silicon with different grafting densities in response to exposure to good solvents and cononsolvent mixtures. Changes in the thickness and segment density distribution of grafted films are investigated by in situ ellipsometry. Based on quantitative modelling of the ellipsometry spectra, we postulate a structural model, which assumes that collapse takes place in the contacting layer between the brush and the co-nonsolvent and the top-collapsed brushes remain hydrated in the film interior. Using the structural model derived from ellipsometry spectra, we analyse the AFM based friction force microscopy data, which were obtained by silica colloidal probes. Results show a large increase of the friction coefficient of PNIPAM grafts when the grafts swollen by water are brought in contact with cononsolvents. For instance, the value of the friction coefficient for a medium density brush in water is four times lower than the value observed in a water–methanol (50% v/v) mixture. This increase of friction is accompanied by an increase in adherence between the PNIPAM chains and the silica colloidal probes, and is a result of chain collapse in the graft when contacted by a co-nonsolvent mixture in agreement with the model postulated on the basis of ellipsometric characterisation. The kinetic behaviour of the collapse is assessed by measuring the temporal variation of friction in situ as a function of elapsed time following contact with the co-nonsolvent as a function of graft density. In conclusion, the effect of cononsolvency influenced both the thickness of the PNIPAM brushes and the tribological behavior of the brush surfaces

    Enzymatic degradation of PLA/cellulose nanocrystal composites

    Get PDF
    The enzymatic degradation of poly (lactic acid) (PLA) and its nanocomposites reinforced with cellulose nanocrystals (CNC) was catalyzed with lipase from Candida rugosa and proteinase K from Tritirachium album. The composites were prepared with the Pickering emulsion process and they contained 5, 10 and 15 wt% nanocellulose. Compression molded plates were cut to pieces for the degradation experiments. Preliminary experiments showed that the lipase does not catalyze the degradation of PLA, but the proteinase K is very efficient. The lactic acid forming during the reaction decreases the pH of the degradation medium almost to 4 that leads to the denaturation of the enzyme. Besides pH, the ion concentration of the solution also influences the rate of degradation; smaller ionic strength is more advantageous. The cellulose nanocrystals used for the reinforcement of PLA increase the rate of degradation and the samples disintegrate very rapidly, the polymer degrades in three days. Because the samples lose their integrity, also the amount of lactic acid forming in the process was determined with a colorimetric assay with iron (III) chloride hexahydrate to follow degradation. A model was applied for the quantitative analysis of the kinetics of degradation and denaturation. The rate of both processes doubles in the presence of cellulose nanocrystals. The model and the obtained parameters can be used for the design of experiments and the prediction of the enzymatic degradation of aliphatic polyesters as well as their blends and composites

    Poly(lactic acid)/lignin blends prepared with the Pickering emulsion template method

    Get PDF
    In this work, the Pickering emulsion template method was used to introduce lignin nanoparticles into poly(lactic acid) (PLA) with improved dispersion. The effect of lignin as the stabilizer of Pickering emulsions was studied in this paper, including the thermal, rheological and mechanical properties of the blends. The PLA/lignin films had reduced light transmission in the UV light region, and Young’s modulus of PLA/lignin blends increased, while their tensile strength and elongation-at-break decreased as compared to neat PLA film. The introduction of lignin improved crystallinity of PLA from 7.5% to over 15%, and increased its decomposition temperature by about 10 °C. The lignin in the blends prepared using the Pickering emulsion template approach had much larger load bearing capacity than the dispersed lignin particles in the usual melt blended material. All the results indicated that the Pickering emulsion template method improves the dispersion of lignin (over 5.0 wt%) in PLA and improves UV protection, crystallinity, decomposition temperature and Young’s modulus of PLA

    Poly(lactic acid)/cellulose nanocrystal composites via the Pickering emulsion approach: Rheological, thermal and mechanical properties

    Get PDF
    The use of nanocellulose is an attractive method to improve the characteristics of biodegradable polymers, but its effects are often affected by uneven dispersion. In this work, cellulose nanocrystals (CNCs) were evenly dispersed into poly(lactic acid) (PLA) via the Pickering emulsion approach. The PLA/CNC composites prepared were studied by rheological, thermal as well as mechanical measurements. Changes in the rheological characteristics of the composites showed that CNC promoted the transition of the composites from fluid to solid-like behavior at high temperatures. The introduction of 5 wt% CNC improved the crystallinity of PLA considerably and increased the onset temperature of crystallization by about 10 °C. The storage modulus of the composites increased throughout the entire temperature range of testing. Flexural modulus was improved considerably. All the results indicated that the Pickering emulsion approach improved the dispersion of CNC in the PLA matrix and CNC improved efficiently most properties of PLA

    An adapted mindfulness intervention for people with dementia in care homes: feasibility pilot study

    Get PDF
    OBJECTIVE: Depression and anxiety are common in dementia. There is a need to develop effective psychosocial interventions. This study sought to develop a group-based adapted mindfulness programme for people with mild to moderate dementia in care homes and to determine its feasibility and potential benefits. METHODS: A manual for a 10-session intervention was developed. Participants were randomly allocated to the intervention plus treatment as usual (n = 20) or treatment as usual (n = 11). Measures of mood, anxiety, quality of life, cognitive function, stress and mindfulness were administered at baseline and 1 week post-intervention. RESULTS: There was a significant improvement in quality of life in the intervention group compared to controls (p = 0.05). There were no significant changes in other outcomes. CONCLUSIONS: The intervention was feasible in terms of recruitment, retention, attrition and acceptability and was associated with significant positive changes in quality of life. A fully powered randomised controlled trial is required. Copyright © 2017 John Wiley & Sons, Ltd

    20(S)-Protopanaxadiol Inhibits Angiotensin II-Induced Epithelial- Mesenchymal Transition by Downregulating SIRT1

    Get PDF
    20(S)-Protopanaxadiol (PPD) is one of the major active metabolites in ginseng saponin. Our previous studies revealed a broad spectrum of antitumor effects of PPD. Angiotensin II (Ang II), the biologically active peptide of the renin-angiotensin system (RAS), plays a critical role in the metastasis of various cancers. However, its role in the anti-metastatic effects of PPD is not clearly understood. In this study, we investigated the inhibitory effect of PPD on Ang II-induced epithelial-mesenchymal transition (EMT) in non-small cell lung cancer (NSCLC) cells, and the potential molecular mechanisms of suppression of NSCLC migration and metastasis by PPD. Treatment of A549 cells with Ang II increased metastases in an experimental model of cancer metastasis in vivo. PPD effectively prevented Ang II-induced EMT, as indicated by upregulation of E-cadherin and downregulation of vimentin. Additionally, Ang II upregulated the class III deacetylase sirtuin 1 (SIRT1) expression in EMT progression, while downregulation of SIRT1 was involved in suppression of Ang II-induced EMT by PPD. Moreover, the inhibitory effect of PPD was reversed by SIRT1 upregulation, and PPD demonstrated synergy with an SIRT1 inhibitor on Ang II-induced EMT. Taken together, our data reveal the mechanism of the anti-metastatic effects of PPD on Ang II-induced EMT and indicate that PPD can be used as an effective anti-tumor treatment

    Gate-tunable Topological Valley Transport in Bilayer Graphene

    Get PDF
    Valley pseudospin, the quantum degree of freedom characterizing the degenerate valleys in energy bands, is a distinct feature of two-dimensional Dirac materials. Similar to spin, the valley pseudospin is spanned by a time reversal pair of states, though the two valley pseudospin states transform to each other under spatial inversion. The breaking of inversion symmetry induces various valley-contrasted physical properties; for instance, valley-dependent topological transport is of both scientific and technological interests. Bilayer graphene (BLG) is a unique system whose intrinsic inversion symmetry can be controllably broken by a perpendicular electric field, offering a rare possibility for continuously tunable valley-topological transport. Here, we used a perpendicular gate electric field to break the inversion symmetry in BLG, and a giant nonlocal response was observed as a result of the topological transport of the valley pseudospin. We further showed that the valley transport is fully tunable by external gates, and that the nonlocal signal persists up to room temperature and over long distances. These observations challenge contemporary understanding of topological transport in a gapped system, and the robust topological transport may lead to future valleytronic applications
    • …
    corecore