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Abstract 

Cellulose nanocrystals (CNCs) were evenly dispersed into poly(lactic acid) (PLA) 

via the Pickering emulsion approach. The PLA/CNC composites prepared were studied 

by rheological, thermal as well as mechanical measurements. Changes in the 

rheological characteristics of the composites showed that CNC promoted the transition 

of the composites from fluid to solid-like behavior at high temperatures. The 

introduction of 5 wt% CNC improved the crystallinity of PLA considerably and 

increased the onset temperature of crystallization by about 10 °C. The storage modulus 

of the composites increased throughout the entire temperature range of testing. Flexural 

modulus was improved considerably. All the results indicated that the Pickering 

emulsion approach improves the dispersion of CNC in the PLA matrix and CNC 

improves efficiently most properties of PLA. 

 

Keywords: Dispersion, Reinforcement, Network formation, Crystallinity, Molecular 

mobility 
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1 Introduction 

Poly(lactic acid) (PLA) is a biodegradable thermoplastic polyester derived from 

renewable resources such as corn, wheat or potato. PLA has been extensively studied 

over the last several decades due to its easy processability, biodegradability and 

biocompatibility (Finkenstadt et al., 2007; Rasal, Janorkar, & Hirt, 2010; Spinella et al., 

2015). However, the application of PLA is limited because of its brittleness caused by 

fast physical ageing, limited thermal stability and slow rate of crystallization (Zhou et 

al., 2013).  

Cellulose nanocrystal (CNC), one of the most promising reinforcements for 

nanocomposites, has attracted considerable attention because it is easily available, 

relatively cheap, nontoxic, has nanoscale dimensions, impressive mechanical properties, 

low density, and it is also biodegradable and biocompatible (D Klemm, Heublein, Fink, 

& Bohn, 2005; Dieter Klemm et al., 2011; Moon, Martini, Nairn, Simonsen, & 

Youngblood, 2011; Silverio et al., 2013). The typical size of the crystal ranges from 5 

to 15 nm in width and from 100 to 500 nm in length (Azizi Samir, Alloin, & Dufresne, 

2005; Lima & Borsali, 2004). Recently, Kontturi and coworkers (Kontturi et al., 2016) 

reported an effective approach using hydrogen chloride vapor to prepare CNC. 

Nanocrystals produced by the hydrogen chloride vapor approach do not have 

electrostatic charge, and the yield of the process can reach 90%. Currently, two major 

techniques are used for the preparation of CNCs nanocomposites. The first technique 

is solvent casting through the evaporation of water or an organic solvent. Huang and 



4 

 

coworkers (Lin, Huang, CHANG, Peter, et al., 2012) prepared PLA/acetylated CNC 

composites by solvent casting. The tensile strength of the composites decreased 

significantly above 6% acetylated CNC filler content, because of bad dispersion. The 

second approach is melt mixing, in which the matrix is extruded in the presence of the 

desired amount of freeze-dried cellulose nanoparticles. Goffin and coworkers (Anne-

Lise et al., 2011) grafted PLA chains onto the surface of CNC and added the modified 

CNC to PLA to obtain composites by the melt mixing approach. Although both 

modified CNCs were readily incorporated into PLA through these two techniques, their 

reinforcing effect was compromised by the decreased interactions caused by the smaller 

number of H bonds resulting from modification. 

As reported in our previous publications (Li et al., 2018; Y. Zhang et al., 2018; 

Yunchong Zhang et al., 2017), we have developed an approach using the Pickering 

emulsion approach for the preparation of PLA composites reinforced with 

nanocellulose crystals. A Pickering emulsion stabilized with nanocellulose may result 

in a more homogeneous dispersion of the nanocellulose in the final material than 

achieved by other techniques. In this communication, we present the use of the 

Pickering emulsion approach for the preparation of PLA/CNC composites. The first 

step is the preparation of a Pickering emulsion stabilized by CNC. The second step is 

the formation of PLA/CNC composite microspheres by the removal of CH2Cl2 and 

water. The last step is the preparation of the PLA/CNC composites by compression 

molding of plates from the microspheres. CNCs derived by the hydrogen chloride vapor 
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approach were shown to stabilize efficiently oil-in-water emulsions. The homogeneity 

of the PLA/CNC composites and their properties were characterized by rheological, 

thermal and mechanical measurements. 

 

 

2 Experimental 

 

2.1 Materials 

PLA (2003D, D-lactic acid: 1.4%, L-lactic acid: 98.6%, density: 1.24 g/cm3) with 

the number-average molecular weight (Mn) of ∼150000 Da and weight-average (Mw) 

of ∼200000 Da, respectively, was supplied by Natureworks, USA. Wood Pulp was 

obtained from the Xinxiang Natural Chemical Co., Ltd. The viscosity-average degree 

of polymerization measured in a solution of cupric ethylene diamine hydroxide (CUEN) 

was estimated to be 870. The measurement was done using an Ubbelohde viscometer. 

Dichloromethane (CH2Cl2) and 37 wt% hydrochloric acid (HCl) was supplied by 

Sinopharm Chemical Reagent CO., Ltd. 

 

2.2 Preparation of CNC by the hydrogen chloride vapor approach 

The CNC was prepared by the method previously reported by Kontturi et al 

(Kontturi et al., 2016). The hydrolysis was carried out in a vacuum desiccator with 35% 

HCl solution poured onto the bottom. The desiccator valve was left open for more than 
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a day in order to substitute the air inside the vessel by the HCl atmosphere completely. 

Subsequently, a wood pulp board was placed inside the desiccator and the hydrolysis 

was allowed to proceed for 8 h at 40 °C, after which the hydrolyzed pulp was transferred 

into water to rinse away excess HCl. The hydrolyzed pulp was sonicated for 30 minutes 

followed by high-pressure homogenization at 800 bar for six times. The product was 

re-dispersed by ultrasonication for 10 min. The concentration of cellulose was 

determined gravimetrically to be 1.01% w/v in the final dispersion. 

 

2.3 Preparation of PLA/CNC composites 

A CNC dispersion was diluted with deionized water to obtain cellulose dispersions 

with the concentrations of 0.25, 0.5 and 0.75 w/v%. The CNC to PLA ratio (5, 10 and 

15 wt%) was adjusted to obtain the desired solid contents of CNC in the composites. A 

CH2Cl2 solution of PLA (10 ml, 100 mg/ml) was added to the aqueous dispersion of 

CNC. The CH2Cl2/water emulsion stabilized by CNC was formed by homogenization 

(IKA T18 homogenizer, Germany) at 12,000 rpm for 3 min followed by ultrasonication 

(Scientz JY 92-IIDN, China) for 3 min. CH2Cl2 was evaporated at ambient temperature 

over 24 hours. The precipitates were vacuum filtered using a filter screen (500 mesh). 

The paste collected on the filter was vacuum dried at 60 °C for 24 h. The PLA/CNC 

composites were produced by the compression molding of the dried paste using a 

Carver Laboratory Press (Carver Inc., USA) at 180 °C and 1500 kg for 5 min. 
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2.4 Characterization 

2.4.1 Microscopy 

The morphology of CNC was characterized using transmission electron 

microscopy (TEM, JEM-2100, Jeol, Japan) operated at 100 kV voltage. TEM 

micrographs were recorded on a dried droplet of the aqueous suspension containing 

0.05% of CNC using a carbon-coated grid (200 mesh). 

After filtration, PLA/CNC composite microspheres were studied with scanning 

electron microscopy (SEM, TM-1000, Hitchi, Japan) at 2 kV and 6–8 A. The samples 

were kept overnight in a vacuum oven at 40 °C and then coated with a gold-palladium 

alloy for 40 s. 

The emulsion obtained was observed using an optical microscope (Eclipse E100, 

Nikon, Japan). 

 

2.4.2 Rheology 

The rheological characteristics of neat PLA and the PLA/CNC composites were 

measured using a ThermoHaake-Mars 60 rheometer with parallel plate geometry (25 

mm diameter) at 200 °C. A frequency sweep from 0.01 Hz to 10 Hz was carried out to 

study the storage modulus (G') and complex viscosity (η*) of the composites at the 

constant deformation of 1%. 
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2.4.3 Thermal analysis 

Neat PLA and the PLA/CNC composites were analyzed using differential 

scanning calorimetry (DSC, 214, Netzsch, Germany). The samples were heated from 

25 to 200 °C, held at 200 °C for 5 min to eliminate thermal history, cooled to 25 °C, 

and heated again to 200 °C under nitrogen purge. The heating rate was 10 °C/min, while 

the cooling rate 2 °C/min. Crystallization temperature (Tc) and crystallization enthalpy 

(△Hc) were determined from the cooling scan. The glass transition temperature (Tg), 

cold crystallization temperature (Tcc), melting temperature (Tm), cold crystallization 

enthalpy (△Hcc) and melting enthalpy (△Hm) were determined from the second heating 

scan. 

The thermal decomposition of neat PLA and the PLA/CNC composites were 

evaluated by thermogravimetric analysis (TG, Netzsch 209F3, Germany). The samples 

were heated from 30 to 600 °C under nitrogen purge. The heating rate was 10 °C/min. 

Dynamic mechanical analysis (DMA) was performed in single cantilever mode 

using a TA Instruments Q800 analyzer (New Castle, DE). The dimensions of the test 

samples were 35 × 10 × 0.5 mm (length × width × thickness). The measurements were 

done at constant frequency (1 Hz) and amplitude (15 μm) in the temperature range from 

30 to 120 °C with the heating rate of 3 °C/min. 

 

2.4.4 Mechanical testing 

The tensile properties of neat PLA and the PLA/CNC composites were determined 
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using a universal testing machine (UH6502, Youhong, China). The experiments were 

done at a gauge length of 30 mm and a crosshead speed of 10 mm/min. Five specimens 

were measured for each set of samples. The samples were thin rectangular plates with 

the dimensions of 100 × 20 × 0.5 mm. 

Flexural testing was conducted using a universal testing machine (UH6502, 

Youhong, China) on rectangular specimens (50.8 × 12.7 × 0.5 mm3) at a support span 

of 25.4 mm and a crosshead speed of 5 mm/min according to the ASTM D 790-2007 

standard. 

 

3 Results and Discussion 

3.1 Preparation and characterization of CNC  

 

Fig. 1 TEM image of CNC prepared by the hydrogen chloride vapor approach 

CNC was prepared by the hydrogen chloride vapor approach. Fig. 1 shows the 

TEM image of CNC obtained in the procedure. The particles are typically rigid rod-

shaped monocrystalline cellulose domains with about 15 nm in diameter and 360 nm in 

length. This result is consistent with previous work (Lorenz, Sattler, Reza, Bismarck, 

& Kontturi, 2017). 



10 

 

3.2 Preparation of PLA/CNC composites 

 

Fig. 2 Images of Pickering emulsions stabilized by 5% (a), 10% (b) and 15% CNC (c). 

The first step in the preparation of the PLA/CNC composites is the forming of an 

emulsion. The optical images of Pickering emulsions stabilized by different CNC 

contents are shown in Fig. 2. The diameter of the oil droplets was under 50 μm for all 

emulsions. The results indicated that a Pickering emulsion could be successfully 

prepared by using CNC as emulsifier.  

 

 

Fig. 3 SEM images of PLA/CNC composites with (a) 5%, (b) 10% and (c) 15% CNC after 

filtration. 

 

SEM images recorded on PLA/CNC composite microspheres with different CNC 

contents are presented in Fig. 3. As is shown in Fig. 3, precipitation resulted in PLA 

microspheres after filtration. After compression molding at 180 °C, the PLA 
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microspheres reinforced with CNC melted to form the composites. 

 

3.3 Rheological characteristics 

 

Fig. 4 Values for (a) storage modulus and (b) complex viscosity of neat PLA and the PLA/CNC 

composites. 

Fig. 4 presents the storage modulus (G') and complex viscosity (η*) of neat PLA 

and that of the PLA/CNC composites as a function of frequency (ω) as determined in 

the rheological measurements. All samples exhibited stable rheological characteristics. 

As shown in Fig. 4a, the frequency dependence of storage modulus of neat PLA is 

typical for polymer melts. On the other hand, storage modulus increased and 

approached a plateau at low frequencies for the CNC composites. As shown in Fig. 4b, 

the complex viscosity of neat PLA displayed a long plateau, with a very slight shear-

thinning behavior at high frequencies. However, all composites exhibited an obvious 

shear-thinning behavior without any plateau region at low frequencies. These results 

indicated that CNC may form a network in the PLA matrix thus promoting the transition 

from a fluid to a solid-like behavior at high temperatures as a result of the good 
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dispersion of the CNC in the PLA matrix (Bagheriasl, Carreau, Riedl, Dubois, & Hamad, 

2016; Kamal & Khoshkava, 2015). 

 

3.3 Melting and crystallization 

 

Fig. 5 DSC traces during (a) cooling and (b) second heating scan of neat PLA and PLA/CNC 

composites. 

The crystallization and melting behavior of PLA/CNC composites with various 

CNC contents were followed by DSC measurements. Fig. 5 shows the DSC traces of 

neat PLA and the PLA/CNC composites. As shown in Fig. 5a, the exothermic 

crystallization of neat PLA appears as a broad peak with low intensity indicating the 

slow crystallization of the polymer (Saeidlou, Huneault, Li, & Park, 2012). As the CNC 

was added into the composites, the crystallization peak shifted to higher temperature 

and became more intense for the PLA/CNC composites as compared to neat PLA. CNC 

may act as nucleating agent (Fortunati et al., 2012), but this assumption is contradicted 

by the fact that the increase in crystallization temperature does not depend on the 

amount of CNC in the composite. The presence of CNC might also increase the 
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mobility of PLA chains as shown by previous research (Müller, Imre, Bere, Móczó, & 

Pukánszky, 2015). 

In Fig. 5b DSC heating traces are shown which were recorded on the PLA/CNC 

composites and on neat PLA. The traces show the glass transition of the polymer, 

followed by the cold crystallization and then the melting of the polymer. Crystallization 

is incomplete for the neat PLA during the cooling of the sample, because of the limited 

mobility of the molecules (Suryanegara, Nakagaito, & Yano, 2010). The cold 

crystallization peak disappears completely in the PLA/CNC composites and the melting 

peak becomes more intense upon the addition of CNC compared to neat PLA. All the 

changes indicate the increased rate of crystallization due to the presence of the cellulose 

nanocrystals (Suryanegara, Nakagaito, & Yano, 2009). 

The crystallinity of the neat PLA and the composites were calculated from the 

second heating scan according to Eq. (1) and the results are summarized in Table 1. The 

crystallinity of the polymer increased with increasing concentration of CNC in the PLA 

matrix. Compared to neat PLA, the crystallinity of the PLA-15%-CNC composite 

increased considerably, by more than 100%. This result confirms previous observations 

related to the effect of CNC on the crystallization of PLA. According these results CNC 

could may act as nucleating agent or increase the rate of crystallization of the PLA 

matrix by improving the mobility of the polymer chains. 
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Table 1 

Thermal characteristics of neat PLA and PLA/CNC composites derived from the 

second DSC heating scan. 

Sample Tg (°C) Tcc (°C) Tm (°C) △Hcc (J/g) △Hm (J/g) χ (%) 

Neat PLA 60.1 122.2 167.0 15.8 36.2 21.9 

PLA-5%-CNC - - 167.5 - 37.5 42.3 

PLA-10%-CNC - - 167.9 - 36.9 43.6 

PLA-15%-CNC - - 167.1 - 35.8 44.3 

3.4 Thermal decomposition, stability 

 

Fig. 6 TGA (a) and DTG (b) traces of neat PLA and PLA/CNC composites. 

 

The thermal decomposition of PLA/CNC composites was determined by 

thermogravimetric analysis (TGA) in nitrogen atmosphere. The temperature 

corresponding to 5% weight loss is defined as the onset of thermal decomposition 

(To5%). The TGA and the derivative TGA traces (DTG) are presented in Fig. 6. 

Compared to the neat PLA, the To5% of the composites shifted towards higher 

temperature. The To5% temperature of neat PLA was about 321°C and it increased to 
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330°C for the PLA-10%-CNC composite indicating that the addition of CNC improved 

the thermal stability of the PLA/CNC composites. The increased thermal 

decomposition temperature of PLA/CNC composites can be attributed to char 

formation during the pyrolysis of CNC in the composites. The forming char acts as 

protective barrier that suppresses the thermal decomposition of the PLA matrix 

(Perinović, Andričić, & Erceg, 2010). In addition, the amount of residues increased with 

increasing the concentration of CNC in the PLA matrix. This result may indicate that 

CNC promotes char formation indeed. The temperature belonging to the maximum rate 

of decomposition (Tmax) can be also determined from the DTG traces. The comparison 

of Tmax for the neat PLA and the composites indicates that this characteristic 

temperature does not change upon the addition of CNC. 

 

3.5 Dynamic mechanical analysis 

 

Fig. 7 Effect of CNC content (wt%) on temperature dependence of (a) storage modulus and (b) 

loss tangent. 
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The thermomechanical properties of PLA/CNC composites and neat PLA were 

investigated by DMA to obtain information about the dynamic mechanical behavior of 

the composites with changing temperature. The storage modulus and the loss tangent 

of PLA/CNC composites and neat PLA are presented in Fig. 7. The addition of CNC to 

the PLA matrix increased storage modulus considerably in the entire temperature range 

of the experiment indicating that CNC acts as efficient reinforcement in the polymer. 

In the glassy state, the storage modulus of the composites increases with increasing 

CNC content as a result of the reinforcing effect of CNC in the PLA matrix. Modulus 

decreases during the transition from the glassy state the rubbery state above Tg at around 

60 °C, a considerable drop in storage modulus is observed for both the neat PLA and 

the PLA/CNC composites. Compared to the neat PLA, a substantial increase of storage 

modulus from 0.14 GPa to 0.67 GPa was observed for the PLA-15%-CNC composite 

at 70 °C due to the high crystallinity of the composites and the probable network 

formation of CNC in the PLA matrix (Jonoobi, Harun, Mathew, & Oksman, 2010). Cold 

crystallization resulted in an increase in modulus studied above 90 °C (Lin, Huang, 

Chang, Feng, & Yu, 2012) for all the materials. 

Fig. 7b shows the changes in the position and intensity of the loss tangent peak as 

a function of temperature for the PLA/CNC composites and the neat PLA. The 

temperature of the peak may be assigned to the glass transition temperature (Tg) of the 

polymer. Compared to neat PLA, the position of the peak shifted to higher temperatures 

in the composites. The Tg of neat PLA was 60.8 °C, which increased to 68.1 °C for the 
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PLA-15%-CNC composite indicating that CNC hinders the movement of chain 

segments in the PLA matrix (Tomé et al., 2011). However, this explanation contradicts 

the conclusion drawn from the melting and crystallization study showing increased 

molecular mobility in the presence of CNC. A more probable explanation is increased 

crystallinity, which decreases the intensity of the loss tangent peak and shits it towards 

higher temperature. The decreased intensity indicates that fewer polymer chains 

participate in the transition as a consequence of the smaller relative amount of 

amorphous PLA phase, on the one hand, and due to the hindered mobility of these 

chains attached to the larger number of PLA crystals, on the other (Tingaut, 

Zimmermann, & Lopezsuevos, 2010). 

3.6 Mechanical properties 

 

Fig. 8 Values for (a) tensile strength and (b) modulus of neat PLA and PLA/CNC 

composites. 

The tensile properties of neat PLA the PLA/CNC composites with different CNC 

contents are shown in Fig. 8. The tensile strength of the composites decreases with 

increasing the CNC content in the PLA matrix. A slight decrease of the tensile strength 
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can be observed from 64 to 55 MPa when adding 5% CNC into the PLA matrix. The 

behavior of the composites is similar to that published in the literature (Robles, 

Urruzola, Labidi, & Serrano, 2015). Although the interaction between the PLA matrix 

(Petersson & Oksman, 2006) and cellulose is quite strong (Faludi et al., 2014), the large 

stiffness of the matrix leads to the apparent decrease of strength. The real influence of 

CNC on mechanical properties and its load bearing capacity cannot be judged from the 

composition dependence of strength directly, it must be evaluated by model calculations. 

Fig. 8b shows that the tensile modulus of the composites increases with increasing CNC 

content because of the good dispersion of CNC in the PLA matrix. Compared to neat 

PLA, an increase of the tensile modulus from 3.5 to 3.8 GPa was observed for the PLA-

15%-CNC composite. Similar improvement in tensile modulus was reported earlier 

(Jonoobi et al., 2010; Sung, Chang, & Han, 2017). The increase in modulus results from 

the reinforcing effect of the filler and from the increased crystallinity of the composites 

(Haafiz et al., 2013; Siqueira, Bras, & Dufresne, 2008). 

 

Fig. 9 Composition dependence of the (a) flexural strength and (b) modulus of 

PLA/CNC composites. 
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The flexural properties of neat PLA and the composites are shown in Fig. 9. 

Compared to neat PLA, the flexural strength of the composite increased from 64 to 76 

MPa after adding 5% CNC to the PLA matrix. Interestingly, flexural strength does not 

change with increasing CNC content probably because of the conflicting effect of filler 

content and the association of the nanocrystals. According to Fig. 9b, the flexural 

modulus of the composites increases with increasing CNC content, similarly to results 

obtained in tensile testing. The modulus was improved from 1.65 to 2.50 GPa at the 

CNC content of 15% compared to neat PLA. The increase of the crystallinity of the 

composites, the high aspect ratio of CNC and maybe also network formation all 

contributed to the improvement of flexural modulus (Dasan, Bhat, & Ahmad, 2017). 

 

4 Conclusions 

PLA/CNC composites were prepared successfully by the Pickering emulsion 

approach. The rheological measurements indicated that CNC may form a network in 

the PLA matrix resulting in a transition from fluid to solid-like behavior at high 

temperatures resulting from the good dispersion of the CNC in the PLA matrix. DSC 

analysis confirmed that cellulose nanocrystals produced by hydrogen chloride vapor 

treatment increase the mobility of PLA chains and thus promote the crystallization of 

the polymer. The results of TG measurements indicated that CNC slightly increases the 

thermal decomposition temperature of the PLA matrix. Compared to neat PLA, the To5% 

temperature of the composites increased from 321 to 330 °C. Compared to the neat PLA 
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the composites had increased storage modulus in the entire temperature range studied. 

At 70 °C, a substantial increase from 0.14 to 0.67 GPa was observed in storage modulus 

for the PLA-15%-CNC composite. The tensile modulus of the PLA/CNC composites 

increases, while their tensile strength slightly decreases as compared to neat PLA. The 

flexural strength and modulus improved considerably upon the addition of CNC. The 

results unambiguously prove that unmodified CNC produced by the hydrochloric acid 

vapor approach improves efficiently the thermal, mechanical and rheological properties 

of PLA and thus it can be a promising reinforcement for polymer composites. 

 

 

Acknowledgements 

Financial support from the Fundamental Research Funds for the Central 

Universities (2232018A3-04) of China, the National Research Fund of Hungary 

(OTKA K 120039) and the BME-Nanonotechnology FIKP grant of EMMI (BME 

FIKP-NAT). 

 

 

 

 

 

 



21 

 

References 

Anne-Lise, G., Jean-Marie, R., Emmanuel, D., Gilberto, S., Youssef, H., Alain, D., & 

Philippe, D., 2011. From interfacial ring-opening polymerization to melt 

processing of cellulose nanowhisker-filled polylactide-based nanocomposites. 

Biomacromolecules, 12 (7), 2456-2465.  

Azizi Samir, M. A., Alloin, F., & Dufresne, A., 2005. Review of recent research into 

cellulosic whiskers, their properties and their application in nanocomposite field. 

Biomacromolecules, 6 (2), 612-626.  

Bagheriasl, D., Carreau, P. J., Riedl, B., Dubois, C., & Hamad, W. Y., 2016. Shear 

rheology of polylactide (PLA)–cellulose nanocrystal (CNC) nanocomposites. 

Cellulose, 23 (3), 1885-1897.  

Dasan, Y. K., Bhat, A. H., & Ahmad, F., 2017. Polymer blend of PLA/PHBV based 

bionanocomposites reinforced with nanocrystalline cellulose for potential 

application as packaging material. Carbohydr. Polym., 157, 1323-1332.  

Faludi, G., Dora, G., Imre, B., Renner, K., Móczó, J., & Pukánszky, B., 2014. 

PLA/lignocellulosic fiber composites: particle characteristics, interfacial 

adhesion, and failure mechanism. J. Appl. Polym. Sci., 131 (4), 39902. 

Finkenstadt, V. L., Liu, C. K., Evangelista, R., Liu, L. S., Cermak, S. C., Hojilla-

Evangelista, M., & Willett, J. L., 2007. Poly(lactic acid) green composites using 

oilseed coproducts as fillers. Ind. Crops Prod., 26 (1), 36-43.  

Fortunati, E., Armentano, I., Zhou, Q., Iannoni, A., Saino, E., Visai, L., . . . Kenny, J. 



22 

 

M., 2012. Multifunctional bionanocomposite films of poly(lactic acid), 

cellulose nanocrystals and silver nanoparticles. Carbohydr. Polym., 87 (2), 

1596-1605. 

Haafiz, M. K. M., Hassan, A., Zakaria, Z., Inuwa, I. M., Islam, M. S., & Jawaid, M., 

2013. Properties of polylactic acid composites reinforced with oil palm biomass 

microcrystalline cellulose. Carbohydr. Polym., 98 (1), 139-145.  

Jonoobi, M., Harun, J., Mathew, A. P., & Oksman, K., 2010. Mechanical properties of 

cellulose nanofiber (CNF) reinforced polylactic acid (PLA) prepared by twin 

screw extrusion. Compos. Sci. Technol., 70 (12), 1742-1747.  

Kamal, M. R., & Khoshkava, V., 2015. Effect of cellulose nanocrystals (CNC) on 

rheological and mechanical properties and crystallization behavior of 

PLA/CNC nanocomposites. Carbohydr. Polym., 123, 105-114.  

Klemm, D., Heublein, B., Fink, H. P., & Bohn, A., 2005. Cellulose: fascinating 

biopolymer and sustainable raw material. Cheminform, 44 (22), 3358-3393.  

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., & Dorris, 

A., 2011. Nanocelluloses: A New Family of Nature‐Based Materials. Angew. 

Chem., Int. Ed., 50 (24), 5438-5466.  

Kontturi, E., Meriluoto, A., Penttilä, P. A., Baccile, N., Malho, J. M., Potthast, A., . . . 

Laine, J., 2016. Degradation and Crystallization of Cellulose in Hydrogen 

Chloride Vapor for High-Yield Isolation of Cellulose Nanocrystals. Angew. 

Chem., Int. Ed., 55 (46), 14455-14458.  



23 

 

 

Li, X., Hegyesi, N., Zhang, Y., Mao, Z., Feng, X., Wang, B., . . . Sui, X., 2019. Poly 

(lactic acid)/Lignin Blends Prepared with the Pickering Emulsion Template 

Method. Eur. Polym. J., 110, 378-384. 

Lima, M. M. D. S., & Borsali, R., 2004. Rodlike Cellulose Microcrystals: Structure, 

Properties, and Applications. Macromol. Rapid Commun., 25 (7), 771-787.  

Lin, N., Huang, J., CHANG, Peter, R., Feng, J., & Jiahui, Y. U., 2012. Surface 

acetylation of cellulose nanocrystal and its reinforcing function in poly(lactic 

acid). Carbohydr. Polym., 83 (4), 1834-1842.  

Lin, N., Huang, J., Chang, P. R., Feng, J., & Yu, J., 2012. Surface acetylation of cellulose 

nanocrystal and its reinforcing function in poly(lactic acid). Carbohydr. Polym., 

83 (4), 1834-1842.  

Lorenz, M., Sattler, S., Reza, M., Bismarck, A., & Kontturi, E., 2017. Cellulose 

nanocrystals by acid vapour: towards more effortless isolation of cellulose 

nanocrystals. Faraday Discuss., 202, 315-330. 

Müller, P., Imre, B., Bere, J., Móczó, J., & Pukánszky, B., 2015. Physical ageing and 

molecular mobility in PLA blends and composites. J. Therm. Anal. Calorim., 

122 (3), 1423-1433.  

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., & Youngblood, J., 2011. Cellulose 

nanomaterials review: structure, properties and nanocomposites. Chem. Soc. 

Rev., 42 (42), 3941-3994.  



24 

 

Perinović, S., Andričić, B., & Erceg, M., 2010. Thermal properties of poly( l -

lactide)/olive stone flour composites. Thermochim. Acta, 510 (1), 97-102.  

Petersson, L., & Oksman, K., 2006. Biopolymer based nanocomposites: Comparing 

layered silicates and microcrystalline cellulose as nanoreinforcement. Compos. 

Sci. Technol., 66 (13), 2187-2196.  

Rasal, R. M., Janorkar, A. V., & Hirt, D. E., 2010. Poly(lactic acid) modifications. Prog. 

Polym. Sci., 35 (3), 338-356.  

Robles, E., Urruzola, I., Labidi, J., & Serrano, L., 2015. Surface-modified nano-

cellulose as reinforcement in poly(lactic acid) to conform new composites. Ind. 

Crops Prod., 71, 44-53. 

Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B., 2012. Poly(lactic acid) 

crystallization. Prog. Polym. Sci., 37 (12), 1657-1677.  

Silverio, Alves, H., Neto, F., Pires, W., Pasquini, Daniel, . . . Oliveira, N., 2013. 

Extraction and characterization of cellulose nanocrystals from corncob;for 

application as reinforcing agent in nanocomposites. Ind. Crops Prod., 44(2), 

427-436.  

Siqueira, G., Bras, J., & Dufresne, A., 2008. Cellulose whiskers versus microfibrils: 

influence of the nature of the nanoparticle and its surface functionalization on 

the thermal and mechanical properties of nanocomposites. Biomacromolecules, 

10 (2), 425-432.  

Spinella, S., Re, G. L., Liu, B., Dorgan, J., Habibi, Y., Leclère, P., . . . Gross, R. A., 



25 

 

2015. Polylactide/cellulose nanocrystal nanocomposites: Efficient routes for 

nanofiber modification and effects of nanofiber chemistry on PLA 

reinforcement. Polymer, 65, 9-17.  

Sung, S. H., Chang, Y., & Han, J., 2017. Development of polylactic acid nanocomposite 

films reinforced with cellulose nanocrystals derived from coffee silverskin. 

Carbohydr. Polym., 169, 495-503.  

Suryanegara, L., Nakagaito, A. N., & Yano, H., 2009. The effect of crystallization of 

PLA on the thermal and mechanical properties of microfibrillated cellulose-

reinforced PLA composites. Compos. Sci. Technol., 69 (7), 1187-1192.  

Suryanegara, L., Nakagaito, A. N., & Yano, H., 2010. Thermo-mechanical properties 

of microfibrillated cellulose-reinforced partially crystallized PLA composites. 

Cellulose, 17 (4), 771-778.  

Tingaut, P., Zimmermann, T., & Lopezsuevos, F., 2010. Synthesis and Characterization 

of Bionanocomposites with Tunable Properties from Poly(lactic acid) and 

Acetylated Microfibrillated Cellulose. Biomacromolecules, 11 (2), 454-464.  

Tomé, L. C., Pinto, R. J. B., Trovatti, E., Freire, C. S. R., Silvestre, A. J. D., Neto, C. P., 

& Gandini, A., 2011. Transparent bionanocomposites with improved properties 

prepared from acetylated bacterial cellulose and poly(lactic acid) through a 

simple approach. Green Chem., 13 (2), 419-427.  

Zhang, Y., Jiang, Y., Han, L., Wang, B., Xu, H., Zhong, Y., . . . Sui, X., 2018. 

Biodegradable regenerated cellulose-dispersed composites with improved 



26 

 

properties via a pickering emulsion process. Carbohydr. Polym., 179, 86-92.  

Zhang, Y., Wu, J., Wang, B., Sui, X., Zhong, Y., Zhang, L., . . . Xu, H., 2017. Cellulose 

nanofibril-reinforced biodegradable polymer composites obtained via a 

Pickering emulsion approach. Cellulose, 24 (8), 3313-3322.  

Zhou, C., Shi, Q., Guo, W., Terrell, L., Qureshi, A. T., Hayes, D. J., & Wu, Q., 2013. 

Electrospun Bio-Nanocomposite Scaffolds for Bone Tissue Engineering by 

Cellulose Nanocrystals Reinforcing Maleic Anhydride Grafted PLA. ACS Appl. 

Mater. Interfaces, 5 (9), 3847-3854.  

 

 

 


