6,650 research outputs found

    Incompatibility of Observables as State-Independent Bound of Uncertainty Relations

    Full text link
    For a pair of observables, they are called "incompatible", if and only if the commutator between them does not vanish, which represents one of the key features in quantum mechanics. The question is, how can we characterize the incompatibility among three or more observables? Here we explore one possible route towards this goal through Heisenberg's uncertainty relations, which impose fundamental constraints on the measurement precisions for incompatible observables. Specifically, we quantify the incompatibility by the optimal state-independent bounds of additive variance-based uncertainty relations. In this way, the degree of incompatibility becomes an intrinsic property among the operators, but not on the quantum state. To justify our case, we focus on the incompatibility of spin systems. For an arbitrary setting of two or three linearly-independent Pauli-spin operators, the incompatibility is analytically solved, the spins are maximally incompatible if and only if they are orthogonal to each other. On the other hand, the measure of incompatibility represents a versatile tool for applications such as testing entanglement of bipartite states, and EPR-steering criteria.Comment: Comments are welcom

    Ecological model to predict potential habitats of Oncomelania hupensis, the intermediate host of Schistosoma japonicum in the mountainous regions, China

    Get PDF
    Schistosomiasis japonica is a parasitic disease that remains endemic in seven provinces in the People's Republic of China (P.R. China). One of the most important measures in the process of schistosomiasis elimination in P.R. China is control of Oncomelania hupensis, the unique intermediate host snail of Schistosoma japonicum. Compared with plains/swamp and lake regions, the hilly/mountainous regions of schistosomiasis endemic areas are more complicated, which makes the snail survey difficult to conduct precisely and efficiently. There is a pressing call to identify the snail habitats of mountainous regions in an efficient and cost-effective manner.; Twelve out of 56 administrative villages distributed with O. hupensis in Eryuan, Yunnan Province, were randomly selected to set up the ecological model. Thirty out of the rest of 78 villages (villages selected for building model were excluded from the villages for validation) in Eryuan and 30 out of 89 villages in Midu, Yunnan Province were selected via a chessboard method for model validation, respectively. Nine-year-average Normalized Difference Vegetation Index (NDVI) and Land Surface Temperature (LST) as well as Digital Elevation Model (DEM) covering Eryuan and Midu were extracted from MODIS and ASTER satellite images, respectively. Slope, elevation and the distance from every village to its nearest stream were derived from DEM. Suitable survival environment conditions for snails were defined by comparing historical snail presence data and remote sensing derived images. According to the suitable conditions for snails, environment factors, i.e. NDVI, LST, elevation, slope and the distance from every village to its nearest stream, were integrated into an ecological niche model to predict O. hupensis potential habitats in Eryuan and Midu. The evaluation of the model was assessed by comparing the model prediction and field investigation. Then, the consistency rate of model validation was calculated in Eryuan and Midu Counties, respectively. The final ecological niche model for potential O. hupensis habitats prediction comprised the following environmental factors, namely: NDVI (≥ 0.446), LST (≥ 22.70°C), elevation (≤ 2,300 m), slope (≤ 11°) and the distance to nearest stream (≤ 1,000 m). The potential O. hupensis habitats in Eryuan distributed in the Lancang River basin and O. hupensis in Midu shows a trend of clustering in the north and spotty distribution in the south. The consistency rates of the ecological niche model in Eryuan and Midu were 76.67% and 83.33%, respectively.; The ecological niche model integrated with NDVI, LST, elevation, slope and distance from every village to its nearest stream adequately predicted the snail habitats in the mountainous regions

    Application of Wavelet Analysis in Detecting Runway Foreign Object Debris

    Get PDF
    Foreign Object Debris (FOD) is dangerous for aircraft safety. And it can be suggested to use image processing technology on the FOD’s detection. Depending on image processing system, a major sub-system in FOD detecting system on the runway, FOD image will be observed efficiently and rapidly with few economy costs and highly accuracy and reliability. The paper analyses the characteristics and principles of wavelet transformation algorithm and applies wavelet theory on FOD’s identification and detection. Identifying the FOD’s shape and marking characteristic point on the runway under poor visual background would be accomplished by programming in MATLAB using wavelet algorithm. The results show that the plan is applicable. Besides that, it brings about profound significance for realizing the real-time detecting on the FOD and testing with more feasibility and efficiency.

    The 2010 spring drought reduced primary productivity in southwestern China

    Get PDF
    Many parts of the world experience frequent and severe droughts. Summer drought can significantly reduce primary productivity and carbon sequestration capacity. The impacts of spring droughts, however, have received much less attention. A severe and sustained spring drought occurred in southwestern China in 2010. Here we examine the influence of this spring drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation greenness and productivity. We first assess the spatial extent, duration and severity of the drought using precipitation data and the Palmer drought severity index. We then examine the impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010. Our results show that the spring drought substantially reduced the enhanced vegetation index (EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and GPP also substantially declined in the summer and did not fully recover from the drought stress until August. The drought reduced regional annual GPP and net primary productivity (NPP) in 2010 by 65 and 46 Tg C yr−1, respectively. Both annual GPP and NPP in 2010 were the lowest over the period 2000–2010. The negative effects of the drought on annual primary productivity were partly offset by the remarkably high productivity in August and September caused by the exceptionally wet conditions in late summer and early fall and the farming practices adopted to mitigate drought effects. Our results show that, like summer droughts, spring droughts can also have significant impacts on vegetation productivity and terrestrial carbon cycling

    A climate-sensitive analysis of lodgepole pine site index in Alberta

    Get PDF
    Growth and yield models in forest management are derived from past observations, assuming implicitly that future growth conditions will be similar. Local observations of apparent changes in site index (SI: defined as the top height at 50 years breast height age) of lodgepole pine in Alberta during the 20th century raise serious questions about validity of this assumption. As part of a joint program on climate change in Alberta by Canadian Forest Service and Laval University, this thesis aims at investigating the impacts from climate change on the site index based on a process-based forest growth model, StandLEAP. Data processing techniques, nonlinear regression and time series analysis are conducted to obtain the necessary models. The research involves the calibration of a climate-sensitive site index model. This model is then used to explain Sl variability between 1901 and 2000 for each plot. A significant SI increment of 4 mm/year appears on average. This change is significant over 100 to 200 years, the time period used to check that the projected cut can be sustained by the forest over the long term. Over this time period, stand SI will change from .4 to .8 m, more than half of a site index class. The results suggest that climate is an important factor affecting lodgepole pine productivity in Alberta, and have implications for future forest management under a warmer climat
    • …
    corecore