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Abstract
Many parts of the world experience frequent and severe droughts. Summer drought can
significantly reduce primary productivity and carbon sequestration capacity. The impacts of
spring droughts, however, have received much less attention. A severe and sustained spring
drought occurred in southwestern China in 2010. Here we examine the influence of this spring
drought on the primary productivity of terrestrial ecosystems using data on climate, vegetation
greenness and productivity. We first assess the spatial extent, duration and severity of the
drought using precipitation data and the Palmer drought severity index. We then examine the
impacts of the drought on terrestrial ecosystems using satellite data for the period 2000–2010.
Our results show that the spring drought substantially reduced the enhanced vegetation index
(EVI) and gross primary productivity (GPP) during spring 2010 (March–May). Both EVI and
GPP also substantially declined in the summer and did not fully recover from the drought
stress until August. The drought reduced regional annual GPP and net primary productivity
(NPP) in 2010 by 65 and 46 Tg C yr−1, respectively. Both annual GPP and NPP in 2010 were
the lowest over the period 2000–2010. The negative effects of the drought on annual primary
productivity were partly offset by the remarkably high productivity in August and September
caused by the exceptionally wet conditions in late summer and early fall and the farming
practices adopted to mitigate drought effects. Our results show that, like summer droughts,
spring droughts can also have significant impacts on vegetation productivity and terrestrial
carbon cycling.

Keywords: drought, primary productivity, vegetation greenness, EVI, GPP, NPP, MODIS

1. Introduction

The Earth’s land surface has experienced frequent and severe
droughts over the past century (Dai et al 1998, Zeng and

Content from this work may be used under the terms
of the Creative Commons Attribution-NonCommercial-

ShareAlike 3.0 licence. Any further distribution of this work must maintain
attribution to the author(s) and the title of the work, journal citation and DOI.

Qian 2005, Della-Marta et al 2007, Xiao et al 2009, Zhao
and Running 2010). The global land area affected by drought
has significantly increased during the last five decades,
particularly in the northern hemisphere (Easterling et al
2000, Hoerling and Kumar 2003, Meehl and Tebaldi 2004).
Droughts are also projected to become more frequent and
more severe during the remainder of the 21st century under
different climate change scenarios (IPCC 2007). Drought has
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profound impacts on ecosystem carbon exchange (Law et al
2001, Rambal et al 2003, Krishnan et al 2006). It can reduce
gross primary productivity (GPP) and net ecosystem exchange
(NEE) by suppressing photosynthetic activity and altering
ecosystem respiration. Drought can also indirectly influence
carbon cycling by inducing fire (Westerling et al 2006, Xiao
and Zhuang 2007), tree mortality (Hogg et al 2008, Allen et al
2010) and insect outbreaks (Kurz et al 2008).

Severe and extended droughts can affect terrestrial carbon
budgets at regional, continental and global scales. Globally,
Zhao and Running (2010) showed that large-scale droughts
reduced global net primary productivity (NPP). Regionally,
researchers have studied the effects of droughts on carbon
dynamics in different regions, such as Amazonia, Europe and
North America. For instance, the 2005 and 2010 droughts over
the Amazon tropical rainforest caused the loss of large amount
of biomass and carbon (Phillips et al 2009, Lewis et al 2011,
Potter et al 2011). In Europe, the drought and heatwave in
2003 substantially reduced GPP and led to a large net carbon
release into the atmosphere (Ciais et al 2005, Reichstein
et al 2007). In the US, Xiao et al (2010, 2011) reported
that the 2002 and 2006 droughts substantially reduced the
net carbon uptake of terrestrial ecosystems. In the central
United States, studies have found that the drought reduced
GPP and NEE and limited ecosystems’ carbon sequestration
capacity (Kwon et al 2008, Zhang et al 2011). In China, severe
and extended droughts during the 20th century substantially
reduced ecosystem carbon sequestration, or even switched
terrestrial ecosystems from being a carbon sink to a source
(Xiao et al 2009). Similar impacts of droughts on vegetation
productivity and carbon budgets have also been investigated
in other regions, such as the grassland ecosystems of southern
Portugal (Pereira et al 2007), temperate forest ecosystems in
East Asia (Saigusa et al 2010) and boreal forest ecosystems in
the Arctic (Welp et al 2007). Most of these studies, however,
focused on summer droughts. Few studies have investigated
the impacts of spring droughts on ecosystem carbon dynamics
(Kwon et al 2008, Noormets et al 2008, Scott et al 2009).

In spring 2010, large areas of southwestern China
experienced a sustained and severe drought. Notably, this
drought was the most severe spring drought during the last
50 years (Yang et al 2012) and was considered to be a
‘once-in-a-century’ drought. The drought initially started in
September 2009 and was most severe from February to April
2010. Satellite observations showed that numerous small and
medium-sized rivers and reservoirs dried up (Li et al 2010).
This severe spring drought had substantial ecological (Wang
2010, Li et al 2010) and socioeconomic (Qiu 2010) impacts.
It had large and destructive effects on agricultural production
and the supply of drinking water to the inhabitants of the
region (Qiu 2010, Wang 2010). In Yunnan, for instance,
8.1 million people (18% of Yunnan’s population) were
short of drinking water (Qiu 2010). According to a survey
from the Office of State Flood Control and Drought Relief
Headquarters, the cultivated land area affected by this spring
drought accounted for 78% of the drought-affected area in
China during the same period. Yunnan and Guizhou were the
two most heavily impacted provinces in southwestern China,

and winter wheat production in these two provinces decreased
by 48% and 31%, respectively (Li et al 2010).

Here we use satellite data on vegetation greenness
and primary productivity and climate data to examine the
responses of terrestrial ecosystems to the 2010 spring drought
in southwestern China. We first characterize the extent,
duration, and severity of the drought using the Palmer drought
severity index (PDSI) and then use satellite data products
to assess the influence of the spring drought on vegetation
greenness and primary productivity.

2. Data and methods

2.1. Study area

Our study region consists of four provinces: Yunnan, Guizhou,
Guangxi and Sichuan and a municipality, Chongqing, in
southwestern China, and covers the southeastern Tibetan
Plateau, most of the Sichuan Basin and the Yunnan–Guizhou
Plateau (figure 1). Drought occurs frequently in southwestern
China and the terrestrial ecosystems in this region are highly
fragile due to its special location, Karst landforms, climate
and geology. This region is largely located in the subtropical
climate area of China and is characterized by dry winters
and wet summers. Annual precipitation is generally above
900 mm (Liu et al 2011) and is unevenly distributed over the
year due to the influence of the subtropical monsoon climate
and the hilly landscape (Zhu et al 2006). Karst landforms
are widely distributed in the east with extensive exposure
of limestone. Dry river valleys are broadly distributed in
the west with sparse vegetation and severe water and soil
loss, which can lead to the degradation of vegetation under
disturbance (Wang et al 2010). Forest, savanna, cropland
and grassland are the typical ecosystem types in this region,
occupying 29.8%, 26.8%, 25.5% and 12.1% of the land area,
respectively, according to the moderate resolution imaging
spectroradiometer (MODIS) land cover map.

Most previous drought studies have focused on temperate
and tropical ecosystems. However, few studies have paid
attention to the subtropical zone. Southwestern China is
largely located in the subtropical zone of China, which is
a special region in the global biome due to the subtropical
vegetation types and Asian monsoon climate. The 2010 spring
drought that occurred in this region allows us to examine
drought impacts in a typical subtropical zone.

2.2. Vegetation greenness and primary productivity products

We used enhanced vegetation index (EVI), GPP, and NPP
data products derived from MODIS to characterize vegetation
greenness and primary productivity during the drought period.
MODIS has provided these data products globally at 1 km
resolution since 24 February 2000.

Vegetation indices including the normalized difference
vegetation index (NDVI) and EVI are important indicators
of plant growth and vegetation productivity. These vegetation
indices have been widely used to examine the spatial and
temporal patterns of vegetation greenness and productivity
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Figure 1. Location of our study region within southwestern China. The land cover map is reclassified from the 500 m MODIS land cover
map.

at a variety of spatial scales (e.g. Kawabata et al 2001,
Slayback et al 2003, Xiao and Moody 2005, de Jong et al
2012). Compared to the NDVI, the EVI remains sensitive to
vegetation variations even in areas with high biomass and
high coverage area (Gao et al 2000, Huete et al 2002). In
our study, we used the MODIS EVI product (MOD13A2;
collection 5) obtained from the Earth Observing System
(EOS) Data Gateway. This product provides EVI with 16 day
intervals and 1 km spatial resolution for the period from
March 2000 to December 2010.

GPP is the amount of carbon absorbed by ecosystems
through photosynthesis and is an important component
in land–atmosphere CO2 exchange. NPP is the difference
between GPP and the respiratory loss by the plants
(autotrophic respiration) and quantifies the net production of
organic matter by plants. We obtained 1 km MODIS GPP
(MOD17A2; collection 5) and NPP (MOD17A3; collection 5)
from the Numerical Terradynamic Simulation Group (www.
ntsg.umt.edu) for the period from March 2000 to December
2010 (Zhao et al 2005, Zhao and Running 2010).

The MOD17A2 product provides GPP estimates with
an 8 day interval and is intended for monitoring seasonal
dynamics of photosynthetic activity. The MOD17A3 NPP
product provides annual NPP for evaluating spatial–temporal
variations in productivity and terrestrial behavior at the
annual scale. These products have been recently improved by
temporally filling missing or cloud-contaminated FPAR/LAI,
spatially interpolating coarse resolution meteorological data
to the 1 km MODIS pixel level, and modifying the
representation of autotrophic respiration in the algorithm
(Zhao et al 2005, Zhao and Running 2010).

2.3. Climate data

We used gridded climate data from the global Modern
Era Retrospective-Analysis for Research and Applications

(MERRA) reanalysis data set. The MERRA reanalysis
data set is developed by NASA’s Global Modeling and
Assimilation Office (GMAO). It provides meteorological data
with a spatial resolution of 0.5◦×0.667◦, spanning the period
from 1979 to the present. MERRA makes use of observations
from NASA’s Earth Observing System satellites and reduces
the uncertainty in precipitation and interannual variability by
improving the representation of the water cycle in reanalyses
(Rienecker et al 2011). We used monthly precipitation and
temperature data from MERRA for the period 2000–2010 in
this study.

We also used the Palmer drought severity index (PDSI;
Palmer 1965). The PDSI is a measure of the cumulative
departure in the surface water balance, and has been
proven to be a good proxy for surface moisture conditions
in measuring environmental water stress. The PDSI uses
monthly precipitation and temperature as inputs to assess
drought and is perhaps the most widely used index
of meteorological drought (Dai et al 2004). The PDSI
incorporates the antecedent precipitation, moisture supply and
moisture demand, and captures dry and wet spells, thereby
reflecting how much soil moisture is currently available
compared to that for normal or average conditions (Palmer
1965). It has been routinely used for monitoring droughts in
the United States. We used the global PDSI data at 2.5◦×2.5◦

spatial resolution from the National Center for Atmospheric
Research (Dai et al 2004). The PDSI varies roughly between
−10.0 (dry) and +10.0 (wet). PDSI values between −0.5 and
0.5 are considered near normal. Values of −1.0 to −1.9 stand
for mild drought, −2.0 to −2.9 for moderate drought and
values below −3.0 for severe to extreme drought.

2.4. Data analysis

We used PDSI data to characterize the spatial extent, severity
and duration of the 2010 spring drought across southwestern
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China. For each grid cell, we also used mean monthly
PDSI data during the drought period to characterize the
surface drought conditions. The percentage area experiencing
drought over the study region was calculated by dividing the
drought-affected area by the total land area of the region.

We also used climate data from MERRA to examine
the precipitation and temperature conditions for the drought
period relative to the long-term climatological means. The
standard definition of climate is based on mean conditions
over a 30 year period. We thus calculated the mean monthly
precipitation and temperature for the period 1980–2009 and
used these as the long-term means. We also calculated the
anomalies of precipitation and temperature for each month in
2010 relative to the means over the 10 year period 2000–2009
to illustrate the climate conditions in the drought relative to
the period during which we have access to MODIS EVI, GPP
and NPP data.

We used MODIS EVI, GPP and NPP data to assess the
impacts of the 2010 spring drought on vegetation greenness
and productivity. First, we calculated the spatial means of
monthly EVI and GPP by averaging the values of each
variable across the study region. We then calculated monthly
EVI and GPP anomalies for each month in 2010 relative to the
means for the period 2000–2009. For each grid cell, we also
calculated monthly anomalies for EVI and GPP and annual
anomalies for EVI, GPP and NPP in 2010 relative to the
means for the 10 year period (2000–2009).

3. Results

3.1. Characterization of the 2010 spring drought

Figure 2 illustrates the monthly average temperature and
monthly total precipitation for southwestern China for
the period 2009–2010, the averages for 1980–2009, and
the averages for 2000–2009 from MERRA data. These
results showed that southwestern China experienced large
precipitation deficits during spring 2010. This spring drought
can be traced back to the fall and winter of 2009. From
September 2009 to May 2010, precipitation decreased by
11.6% and 10.7% relative to the 1980–2009 and 2000–2009
means, respectively (figure 2(a)). Precipitation from January
to May, 2010 declined by 8.3% and 10.9% in 2010 relative
to the means for 1980–2009 and 2000–2009, respectively.
Precipitation in February, in particular, decreased by 51.4%
(26 mm) and 49.5% (24 mm), respectively.

During this drought, large water deficits were concurrent
with higher air temperatures (figure 2(b)). From January to
May 2010, mean air temperature increased by 7.5% relative to
the mean for the 30 year period 1980–2009, with an increase
of 1.6 ◦C and 1.3 ◦C in January and February, respectively.
Relative to the means for the period 2000–2009, mean air
temperature increased by 5.2% from January to May 2010,
with an increase of 1.4 ◦C and 0.8 ◦C in January and February,
respectively.

The drought affected almost the entire study region
except the northwest portion (figure 3). Approximately 56.3%
of the region suffered from severe drought; an additional

Figure 2. Monthly air temperature and precipitation averaged over
southwestern China: (a) monthly total precipitation (mm),
(b) monthly mean temperature (◦C). The 2010 spring drought can
be tracked back to September 2009. The shaded area indicates the
entire dry period from September 2009 to May 2010 including the
2010 spring drought event.

10.5% and 7.0% of the study region was affected by moderate
and mild drought, respectively. The severity of the drought
varied over space. The central and south of the study area
were most severely affected. During the drought period,
precipitation was significantly lower than the long-term mean,
particularly in Yunnan, the west of Guangxi and Guizhou, and
southern Sichuan (figure 3). Yunnan was the most severely
impacted province, exhibiting the largest precipitation deficits
among the five provinces. In Yunnan, precipitation in the
spring decreased by 12.8% and 22.6% relative to the means
for the periods 1980–2009 and 2000–2009, respectively, and
the mean air temperature increased by 3.9 ◦C and 3.8 ◦C,
respectively.

3.2. Impacts of the spring drought on vegetation greenness
and productivity

Figure 4 illustrates the influence of the 2010 spring drought
on vegetation greenness and primary productivity averaged
over the study region. The 2010 spring drought substantially
reduced spring EVI and GPP relative to the mean over the
period 2000–2009. For instance, EVI and GPP declined by
9% and 14% in April, respectively. Both EVI and GPP also
substantially declined in the summer relative to the means
over the period 2000–2009, and did not fully recover from
the drought stress until August. EVI decreased by 12.5% and
6.4% in June and July, respectively, and GPP decreased by
14.0% and 12.8%, respectively. After August, precipitation
substantially increased and exceeded the 30 year (1980–2009)
mean for the same period (figure 2(a)), and both EVI and
GPP were also higher than the 10 year means in August and
September.

The impacts of the spring drought on primary produc-
tivity varied with vegetation type (figure 5). Grasslands and
shrublands were the least affected vegetation types. These
two vegetation types are mainly distributed in northwest of
the study region, which were least affected by this spring
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Figure 3. Spatial extent and severity of the 2010 spring drought in southwestern China. (a) Precipitation anomalies for spring (March–May)
2010 relative to the mean over the period 1980–2009, (b) precipitation anomalies for September 2009–May 2010 relative to the mean over
the period 1980–2009, (c) mean monthly PDSI for spring (March–May) 2010, (d) mean monthly PDSI for September 2009–May 2010.

Figure 4. Intra-annual variations of (a) EVI and (b) GPP for 2010
together with the means for 2000–2009. For the 2000–2009 mean,
the error bars denote mean ± standard error.

drought (figures 1 and 3). Deciduous and mixed forests were
more severely affected than evergreen forests. For evergreen
forests, GPP during the drought period did not substantially
decline because a significant fraction of this vegetation type is
distributed in the northwest and southeast of the study region
and was not severely affected by the drought. The drought
had the greatest impact on croplands and substantially reduced
cropland GPP during spring and summer (from early March to
late July). For example, the cropland GPP decreased by 16.0%
and 13.9% in March and May, respectively. Following the

spring, the spring drought continued to suppress the growth
of crops. In June and July, the GPP of croplands was 19.0%
and 15.5% lower than the means over the period 2000–2009,
respectively.

Spatially, our results show widespread vegetation stress
during the drought period. Both EVI and GPP exhibited strong
negative anomalies in the drought-affected areas during the
spring (March–May) (figure 6). On average, spring EVI and
GPP decreased by 5.6% and 9.6%, respectively. For badly
damaged croplands, spring EVI and GPP showed a decline
of 16.6% and 8.1%, respectively. The largest anomalies
occurred in Guizhou and Yunnan, and these two provinces are
dominated by croplands and savannas.

The annual EVI, GPP and NPP exhibited large negative
anomalies in most drought-affected areas (figure 7). For
many areas, annual EVI in 2010 decreased by 0.05–0.1
relative to the 10 year mean; annual GPP decreased
by 200–400 g C m−2 yr−1; annual NPP decreased by
100–200 g C m−2 yr−1. On average, nearly 63% of the region
showed declines in annual NPP. We found that the largest
NPP reduction occurred in Yunnan, Guizhou and Guangxi.
On average, annual NPP decreased by 9.8% in Guizhou,
and a large agricultural area in the province was affected by
the drought. In Yunnan, where there are extensive savannas,
NPP decreased by 5.7%. In Guangxi, which has extensive
croplands and savannas, NPP decreased by 4.8%.

Spatially-averaged annual NPP in 2010
(641 g C m−2 yr−1) was 4.9% lower than the mean over
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Figure 5. Intra-annual variations of GPP for 2010 and 2000–2009
average for different vegetation types. For the 2000–2009 mean, the
error bars denote mean ± standard error.

the period 2000–2009 (674 g C m−2 yr−1) and was 6.0%
lower than annual NPP in 2009 (682 g C m−2 yr−1). The
reduction of annual NPP was mainly caused by the reduction
of annual GPP. Spatially-averaged GPP decreased by 4.0%
(47.8 g C m−2 yr−1) relative to the mean over the period
2000–2009 (918 g C m−2 yr−1). Overall, the drought reduced
regional annual GPP and NPP by 65 and 46 Tg C yr−1. The
effects of this spring drought on GPP and NPP were amplified
by high spring temperature. The spring and annual carbon
fluxes (GPP and NPP) in 2010 were among the lowest during
the 10 year period 2000–2009 and were as low as those of

2000, one of the driest years of the last five decades. The
southwest of China is a typical Chinese agricultural region and
winter wheat is the major crop. The annual wheat production
declined by 24.0% relative to the mean production from 2000
to 2009 (China Statistical Yearbook from National Bureau of
Statistics, www.stats.gov.cn/), which is generally consistent
with our results.

We also compared the responses of primary productivity
to this spring drought for different vegetation types (figure 8).
The cumulative spring EVI and GPP decreased in 2010
relative to the means over the period 2000–2009 for all
vegetation types except grasslands (figure 8(a)). Croplands,
savannas and deciduous forests were the most impacted
ecosystem types, with reductions of 8.1%, 6.3% and 11.6%,
respectively for spring EVI and 16.6%, 15.5% and 11.5%,
respectively for spring GPP. Both EVI and GPP showed larger
relative changes (declines) during the spring season than for
the year as a whole.

The drought effects on annual GPP and NPP also varied
with vegetation type (figure 8(b)). Croplands and savannas
exhibited the greatest relative changes (declines) in annual
NPP relative to the means over the period 2000–2009, with
reductions of 7.3% and 7.2%, respectively. For croplands, the
regional annual NPP decreased by 6.0% in 2010 compared
to 2009. For shrublands, annual GPP decreased by 3.1%
and annual NPP increased by 3.6%. For deciduous forest,
annual GPP increased by 6.7% and annual NPP decreased by
2.0%. For both shrublands and deciduous forest, the changes
in annual GPP and NPP were in different directions. The
different responses of annual GPP and NPP to the drought
for shrublands and deciduous forest are likely due to the
different response of respiration to the drought. The spring
drought did not reduce the annual NPP of grasslands and
shrublands. Grasslands and shrublands are mainly distributed
in the northwest of this region and were least affected by the
drought.

4. Discussion

The 2010 spring drought in southwestern China was
the most severe spring drought of the last five decades

Figure 6. Regional anomalies of (a) EVI and (b) GPP during spring (March–May) 2010 relative to the means over the period 2000–2009.
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Figure 7. Regional anomalies of annual (a) EVI, (b) GPP and (c) NPP in 2010 relative to the means over the period 2000–2009.

(Yang et al 2012). The PDSI data clearly delineated the
spatial extent, intensity and duration of the drought (figure 3).
This drought affected the majority of the study region. It
can be traced back to September 2009 and was most severe
from February to April 2010. The severe drought was mainly
caused by regional atmospheric anomalies (Lu et al 2011),
and was characterized by large precipitation deficits and high
temperatures. Higher air temperatures increased evaporation
and further exacerbated water deficits. For instance, the
average evaporation for Yunnan during July and December
2009 was 822.5 mm, which is 12% higher than the long-term
average (733.6 mm) (Liu et al 2011). The drought also
led to declines in stream flows, lower reservoir levels,
frequent forest fires and widespread tree mortality. The
unique Karst landform in large areas of southwestern China
may also have exacerbated the surface water conditions.
The water dissolution effect of the Karst landform led to
strong infiltration of surface water and severe surface water
shortages, which further exacerbated the drought (Zhou et al
2012).

The 2010 spring drought substantially reduced vegetation
greenness and primary productivity in the spring in most
drought-affected areas. The negative effects of water deficits
outweighed the positive effects of higher temperatures and
solar radiation (Xiao et al 2009). The concurrence of low
precipitation and high temperatures led to low moisture
conditions, and thereby substantially reduced GPP and NPP
in large parts of the drought-affected regions. Plant growth
did not fully recover from the drought stress until August
2010. The particularly wet conditions starting from August
led to positive anomalies in GPP in August and September
despite the spring drought. The high crop production during
the latter part of the year can also be attributed to improved
farming practices. As a result of a drought mitigation strategy,
the farmers in the area planted different crops together in the
same field, rather than as a monoculture, which boosted yields
by up to 30% (Qiu 2010).

The spring drought led to significant declines in annual
EVI, GPP and NPP in 2010. The annual GPP and NPP in
2010 were the lowest over the period from 2000 to 2010.
For the entire region, the drought resulted in a reduction
of 46 Tg C yr−1 in annual NPP in 2010. For croplands,

Figure 8. Relative changes (%) in (a) spring (March–May) and
(b) annual EVI, GPP and NPP in 2010 relative to the means over the
period 2000–2009 for different vegetation types.

the decline in annual NPP was presumably caused by the
reduced yield of winter wheat due to the spring drought.
According to the China Statistical Yearbook from the National
Bureau of Statistics (www.stats.gov.cn), the winter wheat
yield in southwestern China in 2010 decreased by 10.8%
relative to 2009. Winter wheat is the major food product in
southwestern China and winter wheat is in its jointing and
heading stages and requires a lot of water during spring. In
addition to winter wheat, the yield of other crops such as
rapeseed and sugarcane was also significantly reduced by the
drought (Li et al 2010). The negative impacts of the drought
on annual primary productivity were partly offset by the high
productivity in August and September due to the exceptionally
wet conditions in late summer and early fall and the farming
practices adopted to mitigate drought effects.

The influence of the drought on vegetation greenness and
primary productivity varied with vegetation type. Croplands
exhibited the largest decline in productivity and were most
sensitive to the drought. This extreme drought lowered
the water levels of rivers, reservoirs and lakes, and even
dried up some water bodies (Li et al 2010), which limited
water for irrigation. The drought-affected spring plowing and
also led to a substantial decline in summer-harvested crops
(Yun et al 2012). Forests are generally more resilient to
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drought because trees have deeper roots and have access to
ground water. However, this extreme drought resulted in tree
damage and mortality (Xiong et al 2011) and also triggered
widespread forest fires (Department of Forestry of Guizhou
Province 2012). Grasslands and shrublands were the least
affected as these vegetation types are mainly distributed in
the northwest portion of the region and were not significantly
affected by the drought.

A number of studies have examined the influence of
drought on plant productivity and the terrestrial carbon cycle
(e.g., Ciais et al 2005, Phillips et al 2009, Xiao et al
2009, 2010, 2011, Zhao and Running 2010, Potter et al 2011,
Lewis et al 2011, Zhang et al 2011). The majority of these
studies, however, focused on summer drought, and spring
drought has received much less attention (Kwon et al 2008,
Noormets et al 2008, Scott et al 2009). Our results show that
similar to summer droughts, spring droughts can also have
significant impacts on vegetation productivity and terrestrial
carbon cycling. Drought in summer limits transpiration and
directly reduces photosynthesis. Water stress in spring can
also directly reduce photosynthesis. Moreover, spring drought
can suppress canopy development and peak leaf area, leading
to a decline in annual net carbon uptake (Noormets et al
2008). Spring drought can also shorten the length of the
growing season, particularly for crops. Spring drought can
reduce spring carbon uptake and also enhance summer
respiration, thus leading to reduced annual carbon uptake or
even net annual carbon loss (Scott et al 2009). In a desert
grassland ecosystem, Schwinning et al (2005) concluded that
the grass growth is far more sensitive to spring drought than
summer drought. Spring drought can constrain annual carbon
uptake by regulating the availability of soil moisture during
the summer season (Kwon et al 2008, Noormets et al 2008,
Scott et al 2009). Our results showed that the 2010 spring
drought led to significant declines in vegetation greenness and
primary productivity for both the spring and the year as a
whole in southwestern China.

5. Conclusions

The 2010 spring drought that occurred in southwestern
China was the most severe spring drought over the last five
decades. We first assessed the spatial extent, duration and
severity of the drought using precipitation and PDSI data.
The drought affected almost the entire study region except the
northwest portion. Approximately 56.3% of the study region
suffered from severe drought; an additional 10.5% and 7.0%
of the region was affected by moderate and mild drought,
respectively.

We then examined the impacts of this drought on
vegetation greenness and primary productivity using MODIS
EVI, GPP and NPP data products. Our results show
that the terrestrial ecosystems in southwestern China were
significantly influenced by the 2010 spring drought. Nearly
63% of the region showed declines in vegetation productivity.
The drought substantially reduced spring EVI and GPP. Both
EVI and GPP also substantially declined in the summer
relative to the means over the period 2000–2009 and did

not fully recover from the drought stress until August. The
drought reduced regional annual GPP and NPP in 2010 by
4.0% and 5.0%, respectively, relative to the means over the
period 2000–2009. The impacts of the spring drought on
annual GPP and NPP were partly offset by the remarkably
high productivity in August and September due to the
exceptionally wet conditions and improved farming practices.
The spring and annual primary productivity (GPP and NPP)
in 2010 were the lowest over the 11 year period 2000–2010.
Our results show that severe and extended spring droughts can
have significant impacts on vegetation productivity in both
spring and early summer, leading to declines in annual GPP
and NPP.

Droughts are projected to become more frequent and
more severe during the remainder of the 21st century (Meehl
and Tebaldi 2004, IPCC 2007, Funk et al 2008). Our results
indicate that future droughts will likely have larger impacts on
plant growth and the terrestrial carbon cycle. More frequent
and more severe droughts will partly offset the enhancement
effects of rising atmospheric CO2 concentrations, elevated
air temperatures, and nitrogen deposition on plant growth
and ecosystem carbon sequestration (Xiao et al 2009). The
negative effects of spring and summer droughts on terrestrial
ecosystems may constitute a positive feedback to the climate
system (Xiao et al 2009).
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