20,015 research outputs found

    Congestion behavior under uncertainty on morning commute with preferred arrival time interval

    Get PDF
    This paper extends the bottleneck model to study congestion behavior of morning commute with flexible work schedule. The proposed model assumes a stochastic bottleneck capacity which follows a uniform distribution and homogeneous commuters who have the same preferred arrival time interval. The commuters are fully aware of the stochastic properties of travel time and schedule delay distributions at all departure times that emerge from day-to-day capacity variations. The commuters' departure time choice follows user equilibrium (UE) principle in terms of the expected trip cost. Analytical and numerical solutions of this model are provided. The equilibrium departure time patterns are examined which show that the stochastic capacity increases the mean trip cost and lengthens the rush hour. The adoption of flexitime results in less congestion and more efficient use of bottleneck capacity than fixed-time work schedule. The longer the flexi-time interval is, the more uniformly distributed the departure times are

    Stochastic bottleneck capacity, merging traffic and morning commute

    Get PDF
    This paper investigates the impact of stochastic capacity at the downstream bottleneck after a merge and the impact of merging behavior on the morning commuters' departure-time patterns. The classic bottleneck theory is extended to include a uniformly distributed capacity and the commuters' equilibrium departure patterns are derived for two different merging rules. The results show that uncertainty in the bottleneck capacity increases the commuters' mean trip cost and lengthens the peak period, and that the system total cost is lower under give-way merging than under a fixed-rate merging. Capacity paradoxes with dynamic user responses are found under both merging rules

    Simulation of changes in some soil properties as affected by water level fluctuation in an inland salt marsh

    Get PDF
    AbstractAn 87-day simulation experiment was conducted to test the effects of water level fluctuation on soil properties of an inland salt marsh. The simulated wetland was periodically flooded for 15 days with consistent water levels of 10cm above the wetland surface soil and then drained to 0cm for 9 days. Soil samples were collected from the 0 to 30cm depth with 10cm intervals at days of 0, 39 and 72 after a 15-day pre-incubation. Total nitrogen (TN), total phosphorus (TP), soil organic matter (SOM) and pH were determined during the experimental period. Results showed that TN content was much higher in surface soils than other soil layers during the whole incubation period, especially at the second inundation period (54 days), and TN greatly increased in the soil layers above 20cm with increasing incubation time. However, the SOM content in each soil layer showed a consistent tendency of “decreasing followed increasing” with increasing incubation time. Compared to other soil layers, SOM content in surface soils were generally higher during the simulation periods. TP content in upper soils (0-20cm) consistently increased over the course of incubation time, while those in deeper soils (20-30cm) decreased. Soil pH values showed similar changing tendencies to SOM content over the incubation experiment, while they generally increased with depth

    The influence of impact speed on chest injury outcome in whole body frontal sled impacts

    Get PDF
    While the seatbelt restraint has significantly improved occupant safety, the protection efficiency still needs further enhance to reduce the consequence of the crash. Influence of seatbelt restraint loading on chest injury under 40 km/h has been tested and documented. However, a comprehensive profiling of the efficiency of restraint systems with various impact speeds has not yet been sufficiently reported. The purpose of this study is to analyse the effect of the seatbelt load-ings on chest injuries at different impact speeds utilizing a high bio-fidelity human body Finite Element (FE) model. Based on the whole-body frontal sled test configuration, the current simulation is setup using a substitute of Post-Mortem Human Subjects (PMHS). Chest injury outcomes from simulations are analysed in terms of design variables, such as seatbelt position parameters and collision speed in a full factorial experimental design. These outcomes are specifically referred to strain-based injury probabilities and four-point chest deflections caused by the change of the parameters. The results indicate that impact speed does influence chest injury outcome. The ribcage injury risk for more than 3 fractured ribs will increase from around 40 to nearly 100% when the impact speed change from 20 to 40 km/h if the seatbelt positioned at the middle-sternum of this study. Great injuries to the chest are mainly caused by the change of inertia, which indicates that chest injuries are greatly affected by the impact speed. Furthermore, the rib fracture risk and chest deflection are nonlin-early correlated with the change of the seatbelt position parameters. The study approach can serve as a reference for seatbelt virtual design. Meanwhile, it also provides basis for the research of chest injury mechanism

    Hadronic Annihilation Decay Rates of P-wave Heavy Quarkonia with Both Relativistic and QCD Radiative Corrections

    Full text link
    Hadronic annihilation decay rates of P-wave heavy quarkonia are given to next-to-leading order in both αs\alpha_s and v2v^2. They include ten nonperturbative parameters, which can be rigorously defined as the matrix elements of color-singlet and color-octet operators in NRQCD. We expect these papameters will be determined from lattice calculations in future.Comment: 5 Pages RevTex. The paper is withdraw

    Repression of the Glucocorticoid Receptor Aggravates Acute Ischemic Brain Injuries in Adult Mice.

    Get PDF
    Strokes are one of the leading causes of mortality and chronic morbidity in the world, yet with only limited successful interventions available at present. Our previous studies revealed the potential role of the glucocorticoid receptor (GR) in the pathogenesis of neonatal hypoxic-ischemic encephalopathy (HIE). In the present study, we investigate the effect of GR knockdown on acute ischemic brain injuries in a model of focal cerebral ischemia induced by middle cerebral artery occlusion (MCAO) in adult male CD1 mice. GR siRNAs and the negative control were administered via intracerebroventricular (i.c.v.) injection 48 h prior to MCAO. The cerebral infarction volume and neurobehavioral deficits were determined 48 h after MCAO. RT-qPCR was employed to assess the inflammation-related gene expression profiles in the brain before and after MCAO. Western Blotting was used to evaluate the expression levels of GR, the mineralocorticoid receptor (MR) and the brain-derived neurotrophic factor/tropomyosin receptor kinase B (BDNF/TrkB) signaling. The siRNAs treatment decreased GR, but not MR, protein expression, and significantly enhanced expression levels of pro-inflammatory cytokines (IL-6, IL-1β, and TNF-α) in the brain. Of interest, GR knockdown suppressed BDNF/TrkB signaling in adult mice brains. Importantly, GR siRNA pretreatment significantly increased the infarction size and exacerbated the neurobehavioral deficits induced by MCAO in comparison to the control group. Thus, the present study demonstrates the important role of GR in the regulation of the inflammatory responses and neurotrophic BDNF/TrkB signaling pathway in acute ischemic brain injuries in adult mice, revealing a new insight into the pathogenesis and therapeutic potential in acute ischemic strokes

    Mott-Hubbard Transition of Bosons in Optical Lattices with Three-body Interactions

    Full text link
    In this paper, the quantum phase transition between superfluid state and Mott-insulator state is studied based on an extended Bose-Hubbard model with two- and three-body on-site interactions. By employing the mean-field approximation we find the extension of the insulating 'lobes' and the existence of a fixed point in three dimensional phase space. We investigate the link between experimental parameters and theoretical variables. The possibility to obverse our results through some experimental effects in optically trapped Bose-Einstein Condensates(BEC) is also discussed.Comment: 7 pages, 4 figures; to be appear in Phys. Rev.

    Digital Loop-Mediated Isothermal Amplification on a Commercial Membrane

    Get PDF
    In this work, we report digital loop-mediated isothermal amplification (LAMP) or reverse-transcription LAMP (RT-LAMP) on a commercial membrane, without the need for complex chip fabrication or use of specialized equipment. Due to the pore size distribution, the theoretical error for digital LAMP on these membranes was analyzed, using a combination of Random Distribution Model and Multi-volume Theory. A facile peel-off process was developed for effective droplets formation on the commercial track-etched polycarbonate (PCTE) membrane. Each pore functions as an individual nanoreactor for single DNA amplification. Absolute quantification of bacteria genomic DNA was realized with a dynamic range from 11 to 1.1 105 copies/µL. One-step digital RT-LAMP was also successfully performed on the membrane for the quantification of MS2 virus in wastewater. With the introduction of new probes, the positive pores can be easily distinguished from negative ones with 100 times difference in fluorescence intensities. Finally, the cost of a disposable membrane is less than $0.1/piece, which, to the best of our knowledge, is the most inexpensive way to perform digital LAMP. The membrane system offers opportunities for point-of-care users or common laboratories to perform digital quantification, single cell analysis, or other bioassays in an inexpensive, flexible and simplified way

    Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice

    Get PDF
    Th1 responsiveness to nephritogenic antigens determines susceptibility to crescentic glomerulonephritis in mice. The pattern of glomerulonephritis (GN) developing in response to a planted antigen (sheep anti-mouse GBM globulin) was compared in two strains of mice which demonstrated either a predominant Th1 (C57BL/6) or Th2 (BALB/c) response to this antigen. GN was induced with a subnephritogenic i.v. dose of sheep anti-mouse GBM globulin in mice presensitized to sheep globulin. Sensitized C57BL/6 mice showed pronounced cutaneous delayed-type hypersensitivity (DTH) following the challenge with sheep globulin, low titers of circulating anti-sheep globulin antibody and high interferon γ (IFNγ) and low interleukin 4 (IL-4) production by splenic T cells, consistent with a predominant Th1 pattern of immune response. Sensitized BALB/c mice did not develop DTH following cutaneous challenge with sheep globulin, had higher circulating anti-sheep globulin antibody titers, and showed high IL-4 and low IFNγ production by splenic T cells compared with C57BL/6 mice, consistent with a predominant Th2 response. In C57BL/6 mice, GN developing in response to sheep globulin exhibited a severe crescentic pattern with prominent glomerular T cell and macrophage influx and fibrin deposition. In vivo depletion with a monoclonal anti-CD4 antibody demonstrated that this injury was T helper cell dependent. Treatment with monoclonal anti-mouse IFNγ antibody significantly reduced glomerular injury and crescent formation and attenuated the cutaneous DTH response. GN induced by the same protocol in BALB/c mice exhibited pronounced glomerular IgG and complement deposition. Crescent formation, fibrin deposition, and glomerular T cell and macrophage infiltration were significantly less than observed in C57BL/6 mice, and injury was not T cell dependent in the effector phase. These data suggest that the pattern of glomerular injury induced by a planted antigen can be determined by the balance of T helper cell subset activation. A Th1 response induces a severe crescentic pattern of GN, which like cutaneous DTH, is T helper cell and IFNγ dependent

    Modulation of the thermodynamic, kinetic and magnetic properties of the hydrogen monomer on graphene by charge doping

    Full text link
    The thermodynamic, kinetic and magnetic properties of the hydrogen monomer on doped graphene layers were studied by ab initio simulations. Electron doping was found to heighten the diffusion potential barrier, while hole doping lowers it. However, both kinds of dopings heighten the desorption potential barrier. The underlying mechanism was revealed by investigating the effect of doping on the bond strength of graphene and on the electron transfer and the coulomb interaction between the hydrogen monomer and graphene. The kinetic properties of H and D monomers on doped graphene layers during both the annealing process (annealing time t0=t_0 =300 s) and the constant-rate heating process (heating rate α=\alpha =1.0 K/s) were simulated. Both electron and hole dopings were found to generally increase the desorption temperatures of hydrogen monomers. Electron doping was found to prevent the diffusion of hydrogen monomers, while the hole doping enhances their diffusion. Macroscopic diffusion of hydrogen monomers on graphene can be achieved when the doping-hole density reaches 5.0×10135.0\times10^{13} cm2^{-2}. The magnetic moment and exchange splitting were found to be reduced by both electron and hole dopings, which was explained by a simple exchange model. The study in this report can further enhance the understanding of the interaction between hydrogen and graphene and is expected to be helpful in the design of hydrogenated-graphene-based devices.Comment: Submitte
    corecore