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ABSTRACT 

This paper investigates the impact of stochastic capacity at the downstream bottleneck 

after a merge and the impact of merging behavior on the morning commuters’ departure-

time patterns. The classic bottleneck theory is extended to include a uniformly distributed 

capacity and the commuters’ equilibrium departure patterns are derived for two different 

merging rules. The results show that uncertainty in the bottleneck capacity increases the 

commuters’ mean trip cost and lengthens the peak period, and that the system total cost is 

lower under give-way merging than under a fixed-rate merging. Capacity paradoxes with 

dynamic user responses are found under both merging rules. 

Key words: morning commute; merging behavior; bottleneck; capacity paradox 

 

1.  Introduction 

The economic analysis of morning commute in congested traffic networks has 

followed the seminal work of Vickrey (1969) who formulated the morning commute 

problem to a mono-centric city center as a bottleneck model where commuters choose 

their departure times to avoid periods of high congestion at the bottleneck. This model 

represents a common situation during the morning rush hour, where a fixed and very 

large number of identical (homogeneous) commuters travel from a single origin (e.g. 

home) to a single destination (e.g. workplace) along a same stretch of road. This road has 

a single bottleneck with a fixed and commonly known capacity. If the arrival rate at the 

bottleneck exceeds its capacity, a queue forms. Although all the commuters wish to arrive 

http://dx.doi.org/10.1016/j.tre.2014.02.003
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at the common destination at the same time, this is not physically possible because the 

bottleneck capacity is finite. Consequently, some commuters may choose to depart earlier 

or later to avoid the cost of waiting in the queue, and pay the penalty cost for doing so. 

As noted by Arnott et al. (1990, 1998), in determining his/her departure time, each 

commuter faces a trade-off between journey time and schedule delay (early or late arrival 

at the destination). Vickrey’s model provides a theoretical base to gain qualitative 

insights into alternative policy measures and to improve our understanding on congestion 

management possibilities. 

Vickrey’s model has been extended in various ways (see comprehensive reviews in 

Arnott et al., 1990, 1998; Lindsey, 2004; de Palma and Fosgerau, 2011). Smith (1984) 

and Daganzo (1985) proved the existence and uniqueness of the bottleneck equilibrium. 

The so-called equilibrium refers to a state at which no one can reduce his/her commuting 

cost through changing the departure time. Arnott et al. (1993a) extended the basic 

bottleneck model to consider elastic demand. Huang (2000) investigated the pricing and 

modal split in a system of transit and highway with heterogeneous commuters who differ 

in their disutility from travel time, schedule delay and transit crowding, whilst Tian et al. 

(2013) discussed the efficiency of a tradable credit schemes for managing bottleneck 

congestion and modal split with heterogeneous users. Most of the existing literature, 

however, is based on deterministic settings, with either a fixed capacity and demand 

(Arnott et al., 1990; Huang and Lam, 2002; Huang et al., 2007), or a pre-defined elastic 

demand function (Arnott et al., 1993a; Yang and Huang, 1997). Lindsey (1994) was the 

first to investigate the optimal departure scheduling when capacity is uncertain. Chen et 

al. (2002) developed a probability model to represent the variations and their impacts on 

system performance. Along this line of direction, several other developments on 

bottleneck models with uncertain capacity have been made (see, for example, Arnott et 

al., 1999; Fosgerau, 2008, 2010; Siu and Lo, 2009, 2013; Li et al., 2008; Xiao et al., 

2013). 

On the morning commute problem, most of the existing studies assume that each 

commuter passes only one bottleneck during the commuting trip. However, along a 

congested commuter route, it can be often observed that some commuters may pass 

through two or more bottlenecks during their commute journeys, and en-route they may 
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merge with other traffic streams from a different origin. This research follows the pattern 

of the previous bottleneck analyses but relaxes the above assumption to analyze possible 

equilibrium queuing patterns in a network with more than one bottlenecks. Kuwahara 

(1990) developed the equilibrium queuing patterns at a two-tandem bottleneck during 

morning peak. Arnott et al. (1993b) considered a Y-shaped travel corridor, in a 

configuration shown in Fig. 2, which consists of two origins, one destination and three 

links. Two groups of commuters use the corridor, one entering each arm and passing 

through the corresponding upstream bottleneck and the bottleneck downstream which is 

common to both groups, on their way to work. Different to the usual ramp-mainline 

merging configuration where there is only metering control for the ramp, in the Y-shaped 

network, both upstream links can be controlled. Arnott et al obtained the analytical 

equilibrium solutions and discussed the capacity paradox arising from users’ departure 

time choice in this Y-shaped corridor.  

 Lago and Daganzo (2007) adopted a similar Y-shaped highway corridor to study the 

spillovers of merging traffic. Daniel et al. (2009) conducted a behavioural experiment in 

a controlled environment with human subjects taking part in their departure time choice 

in a setting similar to that of Arnott et al. (1993b) and confirmed the theoretical 

bottleneck paradox by laboratory behaviour. Based on the perspective of the deterministic 

settings, however, all existing studies assumed a fixed capacity at the downstream 

bottleneck.  

In reality, merging on highway is a major source of conflict and potential causes of 

flow breakdown, in other word, the capacity downstream of the merge is an exogenous 

variable in the merge model. Concerns have been raised in recent years about the 

inadequacy of conventional traffic models in representing the complex interactions at 

highway merges (Liu and Hyman, 2012). Several models have been proposed to account 

for capacity fluctuations at merge. For example, Evans et al. (2001) and Kerner (2002) 

postulated the stochastic approaches. Leclercq et al. (2011) applied the Newell-Daganzo 

model (Newell, 1982; Daganzo, 1995) to analyze the capacity drops at merges. Wang et 

al. (2005) and Huang and Sun (2009) employed microsimulation models to investigate 

merging behaviour. Fig. 1 displays two observed speed-flow relationships from a busy 

motorway network in England. The data are from two MIDAS (HA, 1994) loop detectors 
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on the M25 motorway in England, and are 5-minute aggregated speed and flow data. 

Both diagrams show the stochastic maximum flows.  
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Fig. 1. Observed speed-flow relationships from the M25 motorway in England. 

 

To highlight the contribution of this paper relative to the literature, Table 1 provides a 

summary of the existing research on modeling morning commute with bottleneck 

congestion, categorized in terms of modeling scenarios, characteristics of the models, and 

selected key references. It is clear that, whilst the integrated problem with consecutive 

bottlenecks congestion and stochastic capacity is prevalent in reality, it has largely been 

ignored in the literature. Therefore, the aim of this paper is to understand the departure 

time choice of commuters travel through two consecutive bottlenecks and how the 

individual and total travel cost vary with the variability of capacity degradation, and 

based on which to propose and compare different traffic control strategies under this 

morning commute problem. 

In this paper, we adopt the Vickrey’s bottleneck theory to develop a model which 

consists of two upstream links with fixed capacity and one downstream link with a 

stochastic bottleneck capacity. We investigate the morning commute problem from two 

origins to one destination and derive the traffic departure pattern under two merging 

strategies. Our model setting is similar to that of Arnott et al. (1993b) on a Y-shaped 

network (shown in Fig. 2), where two groups of commuters travel from home to work, 
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one entering each arm and passing through the corresponding upstream bottleneck and a 

common downstream bottleneck. Arnott et al. (1993b) investigated the capacity paradox 

and metering of upstream bottleneck for this network with a deterministic capacity at the 

downstream bottleneck, and they derived the equilibrium traffic patterns without 

considering for schedule delay late.  

 

Table 1  Morning commute with bottleneck congestion.  

Modeling scenarios Characteristics Selected key references 

First bottleneck  
model 

Equilibrium queuing patterns at a single 
bottleneck on freeways to a work place 
during the morning peak period 

Vickrey, 1969 

Time-varying pricing 
The scheme can eliminate the queue delay 
at the bottleneck 

Arnott et al., 1990 

Demand elasticity 
The trip demand function is treated as 
price-sensitive in the context of the 
bottleneck model 

Arnott et al., 1993a; 
Yang and Huang, 1997 

Coarse and step tolls 
A positive and constant value during a or 
many certain intervals and zero others 

Laih, 1994; Laih, 2004; 
Lindsey et al., 2012  

Heterogeneous 
commuters 

A set of discrete user classes having 
different  value of time (VOT) or a group 
of users having a continuously 
distribution VOT 

Arnott et al., 1994; 
Lindsey, 2004; van den 
Berg and Verhoef, 2011 

Stochastic capacity  
and demand 

Bottleneck capacity and demand are 
uncertain and assumed stochastic and  
follows a probility distribution 

Arnott et al., 1999; 
Lindsey, 2009; 
Fosgerau, 2010; 

Morning and evening 
commutes 

Integrate morning and evening peaks in a 
day trip  

de Palma and Lindsey, 
2002; Zhang et al., 2005 

Modal split 
A separated transit mode is parallel to a 
highway with a bottleneck 

Tabuchi, 1993;  
Huang, 2000 

Consecutive  
bottlenecks 

Commuters may pass one or two 
bottlenecks during the commuting trip 

Kuwahara, 1990;  
Arnott et al., 1993b; 
Lago and Daganzo 
2007; Daniel et al., 2009 

 

Similar to Daniels et al. (2009), in this study, we allow for schedule delay early as well 

as schedule delay late (with higher costs) to the common destination. However, compared 
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with previous work, this paper has one significant advance: we allow for the downstream 

bottleneck capacity to be stochastic. More specifically, our focus is on day-to-day 

fluctuation of the downstream capacity, assuming that the capacity within a day is 

constant. The fluctuation leads to variability in queue length behind the downstream 

bottleneck and to variability of travel time and trip cost, which in turn influences the 

commuters’ departure time choice behavior. The analytical solutions are derived and its 

properties under two representative merging rules, namely give-way merging and fixed-

rate merging, are investigated. 

Our objective is to formulate the departure time choice with stochastic capacity under 

these two different merging strategies, and to investigate any capacity paradox with 

dynamic user response that may occur. The classical user equilibrium principle is used 

here to characterize the departure time choice behavior (Hendriksonn and Kocur, 1981). 

It is noted that on the principle of choice behavior, there has been discussions to use other 

measures such as reliability-based measures (e.g. Abkowitz, 1981; Siu and Lo, 2013). It 

is expected that new exploration to morning commute problem with complex 

configuration can help us design more effective policies in managing traffic congestion. 

In this spirit, some policy implications will be proposed for merging traffic under 

stochastic capacity. 

The paper is organized as follows. In Section 2, the merge model with one stochastic 

bottleneck capacity is proposed. In Section 3, the equilibrium departure patterns under 

stochastic capacity for two different merging strategies are derived. Numerical results are 

presented in Section 4. Finally, Section 5 concludes the paper.  

 

2.  A General Bottleneck Model with Stochastic Capacity at Downstream of a Merge  

2.1. Model setting with deterministic capacity 

The merge studied in this paper consists of two upstream links and a downstream link. 

Fig. 2 illustrates the merge configuration which contains two possible upstream 

bottlenecks (the dotted li nes) with service capacities 1s  and 2s  respectively, and a single 

downstream bottleneck with service capacity ds . Two groups of commuters, denoted as 

1N  and 2N  respectively, travel along this Y-shaped corridor to the central business 
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district (CBD), departing from origins at a rate of 1( )d t  and 2( )d t  at time  t  respectively. 

Each commuter passes through two possible bottlenecks, one upstream and another 

downstream. The downstream bottleneck is common to both groups. For simplicity, we 

set the free flow travel time of all commuters to be zero, which means the travel time 

formulated in this paper consists only of queuing times behind the bottlenecks. If the 

arrival rate of commuters at a bottleneck exceeds its service capacity, a queue forms. The 

physical length of a queue is not considered. This point-queue assumption implies that 

vehicle queuing at the downstream bottleneck will not spill back to the merging point. 

2
( )r t

2s
2Q

2N
2
( )d t

dsdQ
CBD

( )dr t
1 ( )r t

1
s1

Q1
N 1 ( )d t

 
Fig. 2. The merge configuration. 

 

By definition, the cumulative arrivals at a bottleneck at time t , ( )R t , can be 

formulated as follows: 

 
0

( ) ( )d
t

t
R t r x x  ,  (1) 

where ( )r x  is the arrival rate at time instant x , and 0t  the earliest time with positive 

departure rate.  

Let ( )gT t  denotes the travel time of group g  commuters who leave home at time t . It 

follows that: 

 
 ( )( )

( ) d g gg
g

g d

Q t Q t sQ t
T t

s s


  , 1,2g  , (2) 

where ( )gQ   is the number of vehicles waiting in the queue behind the upstream 

bottleneck g , and ( )dQ   the number of vehicles waiting in the queue behind the 
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downstream bottleneck d . The queuing lengths for the three bottlenecks can be 

computed as follows:  

   0( ) max ( ) ,0d d dQ t R t s t t   , (3) 

   0( ) max ( ) ,0 ,   1,2g g gQ t R t s t t g    . (4) 

The commuters’ total trip costs consists of costs that are associated with travel time 

and schedule delay early or late of arriving at destination. A linear trip cost function, for 

each group of commuters leaving home at time t , can be described as 

    * *( ) ( ) max 0, ( ) max ( ) ,0g g g gC t T t t t T t t T t t         , (5) 

where   is the value of travel time,   the value of schedule delay early (SDE) and   

the value of schedule delay late (SDL). The relationship      holds according to 

the estimates of Small (1982). In equilibrium, all commuters who leave the same origin 

and have the same desired arrival time *t , should experience the same and minimal trip 

cost regardless of their departure times. 

 

2.2. Expected trip cost with stochastic capacity 

The deterministic models focus on cost equilibrium through adjusting departure time. 

When merging interactions exist, however, the capacity degradation of downstream 

bottleneck may occur. In this section, we analyze the commuters’ departure time choice 

following two different merging strategies and stochastic downstream capacity. 

Throughout the paper, the following assumptions are used. 

(A1) Commuters are homogeneous with the same value of time and the same values of 

schedule delays. 

(A2) The capacity of the downstream bottleneck is constant within a day but fluctuates 

from day to day. The variability of capacity is completely exogenous and independent 

upon the commuters’ departure time choice behavior. This means that our model 

accounts only for incidents before the peak starts, but not for incidents during the peak 

(Fosgerau, 2010; Peer et al., 2010). 

(A3) In reality, the capacity is a non-negative stochastic variable changing within a 

range. Following Lo and Tung (2003), Lo et al. (2006) and Li et al. (2008), we adopt the 
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same assumption that the stochastic capacity s  follows a uniform distribution within 

interval [ , ]d ds s , where ds  is the design capacity of the downstream bottleneck and 

( 1)   is a positive parameter representing the lowest rate of available capacity. 

(A4) Commuters are aware of the capacity degeneration probability and their 

departure time choice follows the user equilibrium (UE) principle in terms of the mean 

trip cost. 

(A5) The stochastic capacity at downstream bottleneck is independent of merging 

rules or travel demand from the two upstream links. Furthermore, the queuing behind the 

downstream bottleneck will not extend to the merge point (i.e. no physical queue is 

considered in this paper).  

Incidents such as bad weather conditions, merging accidents or temporary road 

maintenance might decrease road capacity. At microscopic level, variations in driver 

behavior, such as in their reaction times to incidents and adherence to speed limits, in the 

performance of vehicles, in weather and lighting conditions on driving, etc, contribute to 

the unpredictability or the unreliability of travel time (e.g. Hollander and Liu, 2008; Li, 

2006; Noland and Polak, 2002). Here we represent such supply variability through a 

stochastic bottleneck capacity. Different from the Vickrey model, we assume the 

bottleneck capacity is stochastic but the commuters’ departure time choice is 

deterministic. Both commuters’ travel time and their schedule delays are stochastic due to 

capacity fluctuations. Commuters experience the bottleneck day by day so that they can 

learn the incident probability and adjust their departure times to minimize their expected 

travel costs. 

Under the stochastic condition, definitions X(1)X-X(4)X are still valid, and X(5)X can be 

directly used to calculate the trip costs of commuters leaving origins at each time instant. 

However, the trip cost is not deterministic but stochastic instead. The mean trip cost with 

respect to departure time t  can be formulated as follows:  

 ( ) ( ) ( ) ( )           g gg gE C t E T t SDE t SDL t   , (6) 

where ( )gSDE t  and ( )gSDL t  are respectively the schedule delay early and late of group 

g ’s commuters who leave home at time t . We have 



* Corresponding author: Tel: +44 113 3435338; fax: +44 113 3435334. Email: 
R.Liu@its.leeds.ac.uk 
 

  *( ) max 0, ( )  g gSDE t t t T t  and  *( ) max ( ) ,0g gSDL t t T t t   . (7) 

The user equilibrium is reached if and only if the mean trip cost is a constant for all 

departure times of each group. It follows 

 d ( ) d 0   gE C t t , (8) 

 *( )   g gE C t C , 1,2g ,  (9) 

where *
gC  denotes the equilibrium mean trip cost of group g ’s commuters.  

In the next section, we consider two different merging rules: give-way (or priority) 

merge and fixed-rate merge. We give their definitions and present the UE solutions of 

their departure patterns under stochastic bottleneck capacity. 

 

3.  Equilibrium solutions in merge model with stochastic downstream capacity 

The equilibrium solutions must be consistent with node dynamics, i.e. the merging 

interactions. In this section, we derive the equilibrium under a give-way merging rule and 

a fixed-rate merging rule, and analyze the solution properties for each scenario.  

As shown in Fig. 2, 1( )d t  and 2( )d t  denote the departure rates of groups 1 and 2 from 

origins, respectively at time t . Let 1( )r t  and 2( )r t  be their respective exit flow from links 

1 and 2 to the downstream link. Together they form the arrival rate to the downstream 

bottleneck d. We use ( )dr t  to denote the aggregate arrival rate to the downstream merge 

bottleneck, therefore 1 2( ) ( ) ( )dr t r t r t .  

We define a give-way (or priority) merge as such that: (i) link 2 traffic is under ramp 

metering control with a maximum merge rate equals to its capacity 2s , i.e. 2 2( )r t s ; and 

(ii ) link 1 traffic is not controlled and it merges to the downstream link with no restriction. 

This is a situation whereby link 1 traffic has priority over link 2 traffic at the merge.  

We define a fixed-rate merge as one in which both upstream links are metered, and 

their maximum merge rates equal to their respective capacity 1s  and 2s , i.e. 

1 1 2 2( )  and ( )r t s r t s  .  

When an upstream link is controlled with a fixed merge rate, we can consider it as a 

bottleneck and model it using the classic bottleneck model with a fixed capacity. 
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Therefore, depending on the above merging rules, the Fig. 2 network may have one (for 

the give-way merge) or two (fixed-rate merge) upstream bottlenecks.  In addition, for the 

downstream bottleneck after the merge, we assume a stochastic capacity s , where s  

follows a uniform distribution as defined in A3 in Section 2.2 above.  

 

3.1. Give-way merging  

In this section, we study give-way merging. According to the above definition, the 

network reduces to a corridor with one upstream bottleneck with capacity 2s  and one 

downstream bottleneck with a stochastic capacity s . Since group 1 commuters face no 

upstream bottleneck congestion, then 1( ) 0Q t   holds. The mean travel times of groups 1 

and 2 can be respectively formulated as follows: 

  1

( )
( ) dQ t

E T t E
s

    
, (10) 

    2 22
2

2

( )( )
( ) dQ t Q t sQ t

E T t E
s s

 
   

 
. (11) 

Let g  be the peak period of group g , 0[ ,  ],  1,2 e
g g gt t g , where 0

gt  and e
gt  are the 

start and end times of the peak period, respectively. Clearly, 2 1C C , since the capacity 

of link 1 is large enough to never influence the passing through of group 1 commuters. 

group 1 commuters can always arrange to reach bottleneck d at the same time as 

commuters from group 2, thereby incurring the same queue time at bottleneck d, and the 

same schedule delay, but no queue time at link 1. Therefore, under give-way merging 

rule, the relationship of mean trip costs between two groups can either be 2 1C C  or 

1 2C C . (These cases are referred to as Case 3 in Kuwahara, 1990 and Case B in Arnott 

et al., 1993b, respectively). We derive the equilibrium conditions for both cases below.  

Case A: 2 1C C  

In this case, the earliest and latest times of leaving home among all commuters should 

be determined by group 2, i.e. the departure time window of the whole system should be 

0
2 2[ , ]et t  which is also the arrival time window at the downstream bottleneck. The 

equilibrium solutions depend on whether 2 ds s  or 2 ds s . We begin with the case 
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2 ds s , for which the downstream bottleneck is congested from the start and the 

promised capacity expansion paradox occurs. 

Case A1: 2 1C C , 2 ds s  

Similar to the analysis made for a stochastic single bottleneck model (Xiao et al., 

2013), there are four situations possible to occur in a merge network: (I) No schedule 

delay late; (II) Schedule delay either early or late possible; (III) Queuing and schedule 

delay late; (IV) No schedule delay early but probably queuing. These four situations 

occur consequently in four time intervals and are separated by three watershed times t , 

t  and st . We derive the departure rates from origins and arrival rates at downstream 

bottleneck in each of the four situations. Detailed derivation of the arrival rate at 

downstream bottleneck can be found in Appendix 1. For simplicity, we set * 0t  . 

Situation I. No schedule delay late in 0
2[ , ]t t   

In this situation, no commuters experience schedule delay subject to all possible 

values of the capacity of the downstream bottleneck.  

Before group 1 start to travel from origin, i.e. 0 0
2 1t t t  . The expected trip cost can be 

formulated as follows, 

    2 2 2( ) ( ) ( )d ( ) ( )d
d d

d ds s

s s
E C t T t f s s t T t f s s

 
      , (12) 

where ( )f s  is the probability density function of the stochastic capacity. Since 2 ds s  

and there is no departure from group 1, then we can get    0
2 2( )dQ t s s t t   . 

Substituting X(2)X into X(12)X, the above equation can be rewritten as:  

 
    0 0 0

2 2 2 2 2 2 2

2

( ) ( )
( )d ( )d

     
  

d d

d ds s

s sQ t s s t t Q t s t t st
E C f s s f s s

s s 
  . (13) 

Differentiating X(13)X with respect to t  and noting 2 2 2d ( ) d ( ) Q t t d t s , from equilibrium 

condition X(8)X, we get, for 0 0
2 1[ , )t t t  

2( ) 
 dd t s
 

 
,  (14) 

where   11 ln     , 0 1  . 
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Hence, the departure rates from the two upstream origins and the aggregate arrival rate 

to the downstream bottleneck are as follows: 

 1( ) 0d t , (15)  

 2( ) 
 dd t s
 

 
, (16) 

 2( ) dr t s . (17) 

When group 1 begins to travel, i.e. 0
1t t t  , the departure rates of upstream 

commuters and the aggregate arrival rate of the both group at the downstream bottleneck 

can be formulated as follows: 

 1 2( )  
 dd t s s
 

 
, (18) 

 2 2( ) d t s , (19) 

 ( ) 
d dr t s
 

 
. (20) 

The boundary condition for this situation is 1( ) 0SDE t  when ds s . We then have 

0
2( )  d dR t t s  . 

Situation II. Schedule delay either early or late possible in ( , ]t t   

In this situation, both SDE and SDL may occur. If the capacity of the downstream 

bottleneck is large enough, only schedule delay early will occur. Otherwise, schedule 

delay late occurs. The watershed capacity can be derived from ( ) 0 gT t t , which results 

0
2( )  ds R t t .  

Before group 1 end to travel, i.e. 1
et t t   , the departure rates of upstream 

commuters from home and the aggregate arrival rate of the both group at the downstream 

bottleneck can be formulated as follows: 

 
 1 2( )
ln ( ) 1

 
 d

d t s
A B R t


, (21) 

 2 2( ) d t s , (22) 



* Corresponding author: Tel: +44 113 3435338; fax: +44 113 3435334. Email: 
R.Liu@its.leeds.ac.uk 
 

 
 

( )
ln ( ) 1


 d

d

r t
A B R t


, (23) 

where 
    

 

1 0
2ln ln( ) 1

1

    



d

d

t s
A

s

    


, and 

 1




 d

B
s

 


. 

After group 1 ends to travel, i.e. 1( ) 0d t , 1
et t t  , the departure rate of group 2 

from home and the arrival rate at the downstream bottleneck are as follows: 

 
 2( ) ( )
ln ( ) 1

 
 d

d

d t r t
A B R t


. (24) 

The boundary condition for this situation is 1 1( ) ( ) 0 SDE t SDL t   when ds s . We 

then have 0
2( )  d dR t t s .  

Situation III. Queuing and schedule delay late in ( , ]st t   

Similar to Situation I, in this situation all commuters experience schedule delay late 

even though at the maximum value of the downstream bottleneck capacity. The departure 

rate of group 2 and the arrival rate at the downstream bottleneck in this interval are 

 2( ) ( ) 
d dd t r t s
 

 
. (25) 

The boundary condition for this situation is  0
2( )  d s d sR t s t t , i.e. the queuing length 

behind downstream bottleneck at time st  equals to zero when ds s . 

Situation IV. No schedule delay early but probably queuing in 2( , ]e
st t   

Similar to Situation II, there is a watershed capacity of the bottleneck such that the 

queuing length falls to zero. The departure rate of group 2 and the arrival rate at 

downstream bottleneck in this interval are 

 
     
    

0
2

2 0
2

( )
( ) ( )

ln ( ) ln

   
 

  
d d

d

d d

R t t t s
d t r t

R t s t t

   

  
. (26) 

The boundary condition for this situation is ( ) 0dr t . Equivalently, we have 

 0
2 2 2( )  e e

d dR t s t t , where           . 
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Determination of the watershed time instants 

Since the arrival rate ( ) 0dr t  for 2
et t , the cumulative arrivals at the downstream 

bottleneck at time 2
et  equals to the traffic demand, i.e. 2 1 2( )  e

dR t N N . Therefore, we 

have  0
2 2 1 2 ˆe

dt t N N s   , ˆ d ds s . Moreover, the equilibrium condition of the 

stochastic bottleneck model implies that 0 0
2 2 2 2 2( ) ( )        

eE C t E C t t  . Thus, we have 

 
 

0 1 2
2

2

1

1


 

d

N N
t

s k 
, 

 
1 2 2

2

2 1


 


e

d

N N k
t

s k 
, (27) 

where 

 
 
 2k
   
   
 


 

, 
 

 
ln ln

1

  



    




. (28) 

Using the boundary conditions of Situations I, II, and III, we can obtain the watershed 

times as follows: 

 0
2 t k t  , 0

2 t k t  , 0
2 s st k t , (29) 

where 1


 k
  


, 
  

 k
    

 
 and 

 
1


 

 sk
 

   
. 

Since the departure rate of group 1 equals to zero at time instant 1
et , i.e. 1 1( ) 0ed t . 

Submitting 1 1( ) 0ed t  into Eq. X(21)X, we have the cumulative departure flow at time 1
et , 

 
 2

1( ) exp
  

  
 

e
d

s A B
R t

B


. (30) 

Substituting the conservation condition  0
1 1 2 1 2( )   e e

dR t N s t t  into Eq. X(30)X, we 

obtain the following result, 

 
 

1 1 1 2
1

2 2

1

1

 
  



e
e

d

N N N N
t

s s k 
, (31) 

where 
 2

1 1( ) exp
  

   
 

e e s A B
N R t

B


. 

Since the equilibrium condition requires 0
1 1 1 1( ) ( )      

eE C t E C t , we then have  
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10 1 1 2
1

2 2

1

1 1

    
   

 

e

d d

N N N N
t

s s sk

      
   

. (32) 

where 
  2

 
d

s

s

 
 


.  

In equilibrium, all group 2’ commuters should have the same trip cost, 

 * 0 0
2 2 2 2( )    C E C t t , (33) 

which by Eq. X(27)X reduces to 

  
* 1 2
2

2 1

 
 

d

N N
C

s k




. (34) 

The above reflects such a fact that all 1 2N N  commuters pass through the downstream 

bottleneck between 02t  and 2
et . Similarly, we have 

     * 0 0 0
1 2 1 2 2( )    dC s s t t t     .  (35) 

Comparing Eq. X(33)X and Eq. X(35)X leads to 

     * * 0 0
2 1 2 1 2( )    dC C s s t t    . (36)  

The total travel cost of the system is 

 * *
1 1 2 2TC N C N C  . (37)  

The departure rate of group 1 should be always nonnegative, i.e. 1( ) 0d t , 0
1 1 [ , ] et t t . 

For this, from Eq. X(18)X and Eq. X(21)X, the following two conditions must be satisfied, 

 2 
d

s

s

 
 

, (38) 

 
 
 

  
 

1 1 2

2 1 11 1

  
  

 

e
d

Ns N N

s N N

     
    

. (39) 

We present below interesting properties of the equilibrium solution of the proposed 

Y-shaped network model with stochastic capacity in merging area. 

 

Proposition 1. The first commuter of group 2 leaves home earlier than the first one of 

group 1, i.e. 0 0
2 1t t .  
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Proof: If not, the first commuter of group 1 departs earlier than that of group 2, i.e. 

0 0
1 2t t . The first commuter of group 1 will not endure waiting time on link 1 and 

downstream link, then the equilibrium trip cost can be calculated as  * 0
1 1C t t  . 

Because the first commuter of group 2 departs from home later than that of group 1 and 

2s s , then when the first commuter from group 2 begin to depart, a queue must exist at 

downstream link, therefore the equilibrium trip cost of group 2 has  * 0
2 2C t t  . Since 

the case condition satisfies 1 2C C , then 1C  must be smaller than the minimal value of 

2C , i.e.    * 0 * 0
1 1 2C t t t t     ; it implies that 0 0

1 2t t  which violates the previous 

assumption. Therefore, the assumption is invalid and the Proposition turns out to be true. 

 

Hence, group 1 commuters should leave home later than this time. This proposition is 

same as that (L1) in Arontt et al. (1993b).   ƶ 

 

Proposition 2. The last commuter of group 2 leaves home later than the last commuter of 

group 1, i.e. 1 2
e et t .  

Proof: If not, consider a commuter of group 1 who leaves home after time 2
et . Since 1s  is 

sufficiently large, he/she arrives at downstream bottleneck immediately and encounters 

schedule delay late. Differentiating Eq. X(6)X and using Eq. (10), the equilibrium condition 

X(9)X implies 

 2( )  
d dr t s s
 

 
. (40) 

Eq. X(40)X means that there is no queue at the upstream bottleneck. The commuter of 

group 1 would leave home at the same time as someone of group 2 and then arrive at 

work at the same time. Consequently, they have the same travel cost and the condition 

1 2C C  is then violated. This completes the proof.   ƶ 
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From Propositions 1 and 2, we know that commuters of group 2 start earlier, and end 

later than group 1. Hence, the arrival period of group 2 at downstream bottleneck is 

longer than that of group 1.  

 

Proposition 3. At equilibrium state, for the case scenario 1 2C C  and 2 ds s , the earliest 

and the latest departure time of group 2 is independent of 2s , i.e. 0
2 2 0t s   , 

2 2 0et s   . And, enhancing the upstream capacity 2s  will result in group 1 commuters 

to depart earlier, i.e. 0
1 2 0t s   , 1 2 0et s   . 

Proof: Eq. (27) clearly shows that 0
2t  and 2

et  are independent of 2s , so 0
2 2 0t s    and 

2 2 0et s   . Eqs. X(31)X and X(32)X give the departure times of the group 1’s first and last 

commuters, respectively. We then have 

 
 

1 2 1 11
2

2 2

   




e ee N s N Nt

s s
 and 

   

0
1 1 1

2
2 2 2

1

  
  

  

e

d

t N N

s s s s

  
  

. 

According to the definition, 
 2

1 exp
  

  
 

e s A B
N

B


 in Eq. (28), we get 

  2

1 2 1 2
e eN s N B s     and 1 1eN N . It is clear that 0

1 2 0t s   , 1 2 0et s   .  This 

completes the proof.   ƶ 

 

Proposition 4. With a fixed number of commuters, enlarging the value of the parameter 

  will result in a decrease in the length of peak period.  

Proof: From the definition           , we have  d d 0       . This 

implies that   is a monotonic increasing function of  . From Eq. X(27)X, we can obtain the 

length of peak period as follows: 

    
0 1 2 2 1 2 1 2

2 2

2 2

1

1 1

  
     

 
e

d d d

N N k N N N N
t t

s s sk k   . (41) 

Since 1N , 2N , ds  are constant and   is a monotonic increasing function of  , then 

0
2 2
et t  is monotonically decreasing with respect to  . This completes the proof.   ƶ 
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Proposition 5. Under the priority merging rule, when the value of the parameter   

approaches to one, the stochastic bottleneck model follows the deterministic model.  

Proof: According to the L’Hospital’s rule, we have   1
1lim 1 ln 1   

   , then 

 
2

1 1 1 1 1 1
lim 1,  lim 0,  lim lim ,  lim lim
     

      sk k k k      

  
 

, (42) 

and 

  
 

0 0
2 2 1

0
1

1

,                     if  

lim ( ) ,   if  

,    if  


  


   
   

d d

d s

s t t t

r t s t t t

s t t t





  

  

 (43) 

 

  0 0
2 1

0
2 2 1 1

1

1 2

,    if  

lim ( ) ,                     if

( ),                 if  


   
  
  

d

e

e e
d

s t t t

d t s   t t t

r t t t t


  

 (44) 

 0
1 2 1 1

1
lim ( ) ( ) ,   if


    e
dd t r t s   t t t


. (45) 

Substituting Eqs. (42)-X(45)X into Eqs. X(29)X-X(32)X, the watershed times become 

 0 1 2 1 2 1 2
2 2,  ,  

  
         

  
e

s
d d d

N N N N N N
t t t t t

s s s 
  

      
, (46)  

 0 02 2 1
1 2 1 1

2 1

,  


   
e

e edN s t N
t t t t

s d
. (47) 

The above results are consistent with that reported in Daniel et al. (2009) for a 

deterministic bottleneck model.   ƶ 

 

Both Propositions 3 and 4 show that the departure time period of group 2 is related to 

the downstream bottleneck capacity ds , but independent to the upstream bottleneck 

capacity 2s . This is because 2 ds s , so that the real constraint for group 2’s commuters is 

caused by the downstream bottleneck.  
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Theorem 1. At equilibrium state, the total travel cost is a monotonically decreasing 

function of the downstream capacity ds , but a monotonically increasing function of the 

upstream capacity 2s , i.e. 0dTC s   , 2 0TC s   .  

Proof. See Appendix 2.   ƶ 

 

Theorem 1 gives a caution that expanding the capacity of upstream bottleneck with 

intention to improve the transportation system, may in fact lead to deterioration of the 

network. Thus, it can be regarded as a dynamic version of some paradox. The implication 

is that expanding network, if not fully considering the reaction of travelers, may be 

counter-productive. 

Case A2: 2 1C C , 2 ds s  

In this case, the equilibrium departures from origins and arrival rates at downstream 

bottleneck in Situations (I)-(IV) remain the same as in Case A1, except the first departure 

rate of group 2 in time interval 0 0
2 1[ , )t t . If 2 d ds s s  , there is no queue at downstream 

bottleneck during  time interval  0 0
2 1[ , )t t . Whilst if 2d ds s s   , depending on capacity 

2s , there is possible queue at downstream bottleneck during the same interval. The mean 

travel time of groups 2 can be formulated as follows: 

   2
2

2

( )
( )

Q t
E T t

s
 ,  if 2 d ds s s  , (48) 

    2 2 22
2

2

( )( )
( ) ( )d


  

d

s d

s

Q t Q t sQ t
E T t f s s

s s
,  if 2d ds s s   . (49) 

Submitting X(48)X and X(49)X into X(6)X, and using equilibrium condition X(8)X, the departure rate 

of group 2 in time interval 0 0
2 1[ , )t t  can be formulated as follows: 

 2 2( )d t s


 



,  if 2 d ds s s  , (50) 

 2( ) dd t s
 

 



,  if 2d ds s s   , (51) 

where 
  2 2

1

ln 1d ds s s s







 
. 
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As discussed earlier, depending on the degradation of the bottleneck capacity (i.e. the  

  value), in the earliest departure time period of group 2 and before group 1 departs, 

group 2 traffic could queue or not queue at the downstream bottleneck. This makes it 

impossible to derive analytical solutions for the watershed points for all situations. 

Furthermore, it is not possible to analyze capacity paradox for Case A2. 

Case B: 2 1C C  

Because there is no control to the  upstream link 1 traffic, the result that the two 

groups incurs the same trip costs can only appear if there is no queue to link 2, i.e. if link 

2 is also not controlled. In this case, the equilibrium departure rate from origin equals to 

its arrival rate at downstream bottleneck. The analytical solutions for the equilibrium 

pattern for this case can be seen in Xiao et al., (2013). Then, the total travel cost can be 

formulated as follows: 

 
 

 2

1 2

21 d

N N
TC

k s





 


. (52) 

Evidently, 0dTC s    and 2 0TC s   , so there is no paradox. The same conclusion is 

drawn under a deterministic bottleneck model by Arnott et al. (1993b). 

 

3.2. Fixed-rate merging  

In previous subsection, we have investigated the give-way merging rule in a network 

configuration where the upstream link serving group 1 is not controlled by ramp metering. 

Our analysis shows that commuters of group 1 leave home at a rate   2 ds s    , 

where   11 ln      and 0 1  . To study how vehicles interact at the merge, we 

now consider a configuration where both upstream links are controlled with the service 

rate 1s  and 2s , respectively. We assume 

 1 2 
 ds s s
 

 
, (53)  

where 2 ds s . In this case, both group 1 and group 2 commuters face upstream 

bottleneck congestion, the mean travel times for both groups can be formulated as 

follows: 
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 ( )( )

( ) d g gg
g

g

Q t Q t sQ t
E T t E

s s

 
     

  
, 1,2g . (54) 

The congestion degree of bottleneck g  can be measured as follows: 

,     1,2g
g

g

N
g

s
   . 

where gN is the demand and gs  denotes the bottleneck capacity of link g .  

There are two cases that need to be considered: (i) the congestion degree at bottleneck 

1 is lighter than bottleneck 2 (1 2  ) such that the trip cost of group 1 is smaller than 

that of group 2, i.e. 2 1C C , thus, the first commuter of group 2 leaves home earlier than 

any group 1 commuter; (ii ) the congestion degree at bottleneck 1 is heavier than 

bottleneck 2  (1 2  ) such that 2 1C C  holds, the first commuter of group 1 leaves 

home earlier than group 2 commuters. These two cases are symmetric as far as their 

departure time choices are concerned; hence we only study the first case in the following. 

Similar to the give-way merge case in Section 3.1, all commuters face four situations 

to make their decisions about departure times. 

Situation UI U. No schedule delay late in 0
2[ , ]t t   

If 0 0
2 1[ , )t t t , the departure rate of upstream commuters and the arrival rate to the  

downstream bottleneck are the same as Eqs. X(15)X-X(17)X.  

If 0
1[ , ]t t t , we can get 

 2
1

2 1

( )  
  d

s
d t s

s s

 
 

, 2
2

2 1

( )  
  d

s
d t s

s s

 
 

 and 1 2( )  dr t s s . 

The boundary condition for this situation is 1( ) 0SDE t  when ds s , we then have 

0
2( )  d dR t t s  . 

Situation UII U. Schedule delay either early or late possible in ( , ]t t   

If ( , ]t t t  , we can obtain 

 
 
 

1 1 2
1( )

ln ( ) 1




 
s s s

d t
A B R t


, 

 
 

2 1 2
2( )

ln ( ) 1




 
s s s

d t
A B R t


 and 1 2( )  dr t s s . 
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The boundary condition for this situation is 1 1( ) ( ) 0 SDE t SDL t   when ds s , we 

then have 0
2( )  d dR t t s .  

Situation UIII U. Queuing and schedule delay late in ( , ]st t   

If 1( , ]et t t , we can get 

 1
1

1 2

( )  
  d

s
d t s

s s







, 2
2

1 2

( )  
  d

s
d t s

s s







 and 1 2( )  dr t s s . 

The boundary condition in this interval is  0
1 1 1 1( )  e e

dR t s t t , i.e. the queuing length in 

upstream bottleneck 1 at time 1
et  equals to zero.  

If 1( , ]e
st t t , we can have 

 1( ) 0d t  , 2( ) 
 dd t s






 and 2( ) dr t s . 

The boundary condition in this interval is  0
2( )  d s d sR t s t t , i.e. the queuing length in 

downstream bottleneck at time st  equals to zero when ds s . 

Situation UIVU. No schedule delay early but probably queuing in 2( , ]e
st t   

Similar to Situation UII U, we can get 

 1( ) 0d t  ,
     
    

0
2

2 0
2

( )
( ) ( )

ln ( ) ln

   
 

  
d d

d

d d

R t t t s
d t r t

R t s t t

   

  
. 

The boundary condition for this situation is ( ) 0dr t . Equivalently, we have 

 0
2 2 2( )  e e

d dR t s t t , where           .  

Note that the definitions to the abbreviated parameters, including , ,A B   and 

watershed times, are the same as those used in subsection 3.1. 

To get the travel cost for each group, we need to derive all watershed times. Using the 

boundary conditions and equilibrium conditions, we have 

 
0 1 2
2

2

1

1


 

d

N N
t

s k 
, 

 
1 2 2

2

2 1


 


e

d

N N k
t

s k 
, 0

2 t k t  , 0
2 t k t  , 0

2 s st k t , 

where 2k  is given by (28), ,k k   and sk  are the same as that used in (29).  
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Noting the conservation condition  0
1 1 1 1 es t t N  and the trip cost equilibrium 

0
1 1 1 1( ) ( )      

eE C t E C t  for commuters of group 1, we have  

 
 

 
2 1 20 21 1 2

1
1 2

1

1

     
   

 
d d

d

s s s s s sN N N
t

s sk

     
  

, 

 
 

 
2 1 2 21 1 2

1
1 2

1

1

     
   

 
de d

d

s s s s s sN N N
t

s sk

     
  

. 

Given that all group 2 commuters have the same trip cost as the first commuter, using 

the equilibrium condition, we then get 

  
* 1 2
2

2 1

 
 

d

N N
C

s k




. 

For group 1, similarly we have 

     * 0 0 0 0
1 1 1 2 1 2 2( ) ( )        dC E C t s s t t t     .   

Substituting with 0
1t  and 0

2t , leads to 

 
 

 
1* 1 1 2

1
1 2 2

1

1

    
        

d d

d

s s sN N N
C

s ss k

   
  

   
, 

where    2  ds s     ,    2  ds s     . Finally, the total travel cost is 

* *
1 1 2 2 TC N C N C . 

 

Proposition 6. Under the fixed-rate merging rule, when the value of the parameter   

approaches to one, the stochastic bottleneck model follows the deterministic model. 

Proof: According to Proposition 3, we have 

 
2

1 1 1 1 1 1
lim 1,  lim 0,  lim lim ,  lim lim
     

      sk k k k      

  
 

. (55) 

Then, under fixed-rate merging rule, we get 
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 (56) 
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 (58) 

Furthermore, the watershed times are 

 0 1 2 1 2 1 2
2 2,  ,  

  
         

  
e

s
d d d

N N N N N N
t t t t t

s s s 
  

      
, (59)  

 
   0 02 1 2 1

1 2 2
1

1d
d

s s s s N
t s s t

s

    
 

   
   


, (60) 

 
    02 1 2 1

1 2 2
1

1e d
d

s s s s N
t s s t

s

    
 

   
   


. (61) 

This completes the proof.   ƶ 

 

Theorem 2. Under the fixed-rate merging rule, the total travel cost is a monotonically 

decreasing function of capacity 1s  and of capacity ds , but a monotonically increasing 

function of capacity 2s , i.e. 1 0TC s   , 2 0TC s    and 0dTC s   .  

Proof. See Appendix 3.   ƶ 

 

Theorem 2 shows a capacity paradox in that increasing capacity 2s  leads to an increase in 

total travel cost. This paradox suggests that metering the capacity of upstream bottleneck 

2 is beneficial. Moreover, the total travel cost is a decreasing function of upstream 

capacity bottleneck 1, indicating that metering the capacity of upstream bottleneck 1 is 

harmful. 

4.  Numerical examples 

In this section, we present numerical results for the Y-shaped merge network model 

with stochastic downstream bottleneck under the give-way merging in subsection 4.1 and 
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fixed–rate merging rule in subsection 4.2.  In subsection 4.3, we compare and discuss the 

analytical and numerical results in our model. We set the shadow values of travel time, 

early arrival time, and late arrival time as  =6.4 ($/hour),  =3.9 ($/hour), and  =15.21 

($/hour), respectively; these shadow values are chosen in accordance with the empirical 

findings in Small (1982). The other inputs in the model are set as, 1 0.5N  , 2 1.0N  , 

1 0.8s  , 2 s 0.8 or 1.0 and 0.8ds  . According to Arnott et al. (1990), the ratio of 

demand to capacity equals to the length of morning commute rush hour under 

deterministic bottleneck model. Thus 1 2( ) 1.85dN N s   means that the rush hour at 

this merge area lasts for 1.85 hours. The value of ˆds  can be computed from 

   ˆ   d ds s     . 
 

4.1. Give-way merging  

Fig. 3 shows the cumulative departures and arrival distributions of both groups under 

the give-way merging rule. In Fig. 3(a), 2s  is set as equal to ds . The individual mean trip 

cost for groups 1 and 2 are  1E 5.34C  and  2E 6.23C , respectively. The total trip 

cost is 8.91TC . In Fig. 3(b), the capacity of the upstream bottleneck 2s  is increased to 

1.0. As a result, the first commuter of group 1 leaves home earlier than in Fig. 3(a) which 

is consistent with Proposition 3 and the corresponding costs are 1E 5.83C , 

 2E 6.23C  and 9.14TC . Therefore, from Fig. 3(a) to Fig. 3(b), one of upstream 

bottlenecks is expanded, the individual trip costs do not come down and the total network 

cost goes up. Thus, enhancing bottleneck capacity results in a degradation of the system 

efficiency. This provides a specific instance about bottleneck paradox. The trip cost of 

group 2 remains unchanged, which verifies the analytical result that the trip cost of group 

2 is independent of the capacity 2s .  
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Fig. 3. Cumulative departures under give-way merging rule  for two different levels of bottleneck 2 

capacity: (a) 2 0.8s   and (b) 2 1.0s    

 

Table 2 

Influence of   on mean trip costs and watershed time instants under the give-way merging rule. 

   2E C   1E C  0
2t  0

1t  t  t  st  
1
et  2

et  0
1 1
et t  0

2 2
et t  

1.00 5.82 5.11 -1.49 -1.28 -0.80 -0.80 0.38 -0.80 0.38 0.48 1.88 
0.95 6.02 5.46 -1.54 -1.37 -0.87 -0.81 0.33 -0.86 0.36 0.51 1.90 
0.90 6.23 5.83 -1.60 -1.47 -0.94 -0.68 0.27 -0.93 0.34 0.54 1.93 
0.85 6.45 6.23 -1.66 -1.58 -1.03 -0.54 0.20 -1.01 0.31 0.57 1.96 
0.80 6.70 6.66 -1.72 -1.70 -1.11 -0.38 0.14 -1.91 0.28 0.61 1.99 

 

It is interesting to investigate the sensitivity of parameter   on the solution of the 

stochastic merge model. We set  2 1.0s   and 0.8ds  , and vary the  -value from 0.8 to 

1.0. The mean trip costs and watershed time instants derived are presented in Table 2. It 

can be seen that 1
et t t    and 2

e
st t  when 1.0  . This is consistent with Proposition 

5. It can also be seen that the length of peak period increases as the  -value decreases. 

This is consistent with Proposition 4. Since decreasing the  -value is equivalent to 
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increasing the travel time uncertainty, this means that commuters will leave home earlier 

with smaller  -value to avoid the potential loss caused by uncertainty risk. 
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Fig. 4. Queue length by departure time behind bottleneck d and 2 for two levels of 2s  under give-

way merging rule. 

 

To illustrate the paradox in a different way, Fig. 4 depicts the mean queue lengths 

behind bottleneck d according to mean capacity ˆds  and bottleneck 2 according to 

capacity 2s  during the peak period time. It can be seen that commuters of group 2 

experience less queuing congestion at bottleneck 2 when 2s  is increased from 0.8 to 1.0. 

However, the queuing congestion at bottleneck d becomes more serious. Moreover, it 

should be noted that the peak period length doesn’t change with the 2s  value. This is 

consistent with Proposition 4. 
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Fig. 5. Variation of the individual group costs 1C  and 2C , and the system cost TC  with 2s  under 

give-way merging rule. 

Furthermore, to illustrate the capacity paradox through traffic cost under give-way 

merging rule, we calculate the traffic equilibrium in the network under varying capacity 

of the upstream link 2, and the results are depicted in Figure 5. It shows clearly that when 

2s  increases, the individual trip cost of group 1 (1C ) increases, whilst the cost of group 2 

( 2C ) remains unchanged. Overall, increasing capacity 2s  results in an increase of total 

trip cost (TC ). This is consistent with Theorem 1. 

Figures 6 and 7 depict the different effects of the stochasticity on traffic performance. 

Firstly, the time-varying arrival rates to downstream bottleneck against the  -value are 

presented in Figure 6. Here, the service rate 2s  and the designed capacity of downstream 

bottleneck ds  are both set to be 0.8, which implies that the stochastic downstream 

capacity s  can fluctuate in the interval [0.8 ,  0.8]  day-to-day and 1  . One can 

observe from the figure that the merge model with stochastic downstream bottleneck 

immediately follows the deterministic model when the  -value approaches to one. 
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Fig. 6. Influence of parameter   on the arrival rate at downstream bottleneck under give merging.  

 

Secondly, with the same parameter setting, the mean trip cost and its individual 

component costs: mean travel time cost, the mean schedule delay early and late costs 

(SDE and SDL) for the two groups of commuters are shown in Figure 7. We can observe 

that the mean trip costs for all commuters in each group are the same and equal to $4.76 

of group 1 and $6.23 of group 2 respectively, but the commuters endure a trade-off 

between the cost of travel time and the cost of schedule delay. From Figure 7(a), we can 

see that SDL curve is non zero at the end of the peak period. This means that commuters 

from group 1 can arrive early or late under the stochastic capacity assumption. Daniel et 

al (2009) found that, under deterministic capacity, commuters for group 1 can only arrive 

early. Furthermore, for group 2 traffic in Figure 7(b), we note that the SDE and SDL 

curves cross at a point where their costs are non zero and the travel time cost at the 

crossing point does not reach the mean trip cost. Again, these results under the stochastic 

capacity are different to those under deterministic capacity as discussed in Daniel et al. 

(2009).  
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        Fig. 7. Mean trip cost and its individual component costs of (a) group 1 and (b) group 2 

under give-way merging. 

 

 

4.2. Fixed-rate merging  

With the definition of fixed-rate merging, both of the upstream links can be treated as 

bottlenecks with capacity 1 0.8s   and 2 1.0s  , respectively. Taking the other parameters 

settings as in Section 4.1, Table 3 presents the mean trip costs and the watershed time 

instants against different  -values under the fixed-rate merging rule. It can be seen that 

the length of the peak period for group 2 becomes shorter when  -value increases, whilst 

the peak period length of group 1 remain unchanged. The first departure times of both 

group decrease with decreasing  -value. This suggests that commuters would leave 

home earlier when uncertainty increases. 

 

Table 3  

Influence of   on mean trip costs and watershed time instants under the fixed-rate merging rule. 

   2E C   1E C  0
2t  0

1t  t  t  st  
1
et  2

et  0
1 1
et t  0

2 2
et t  

1.00 5.82 5.53 -1.49 -1.40 -0.79 -0.79 0.38 -0.79 0.38 0.63 1.88 
0.95 6.02 5.72 -1.54 -1.45 -0.85 -0.81 0.33 -0.83 0.36 0.63 1.90 
0.90 6.23 5.98 -1.60 -1.52 -0.92 -0.68 0.27 -0.89 0.34 0.63 1.93 
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0.85 6.45 6.30 -1.66 -1.60 -1.01 -0.54 0.20 -0.98 0.31 0.63 1.96 
0.80 6.70 6.66 -1.72 -1.71 -1.10 -0.38 0.14 -1.08 0.28 0.63 1.99 

 

Fig. 8 shows the cumulative departures from origins and integrated arrival 

distributions of both groups at downstream bottleneck under fixed-rate merging rule. In 

Fig. 8(a) with 0.8  , it can be seen that the times of first commuters of both groups 

leave home are very close. Whilst in Fig. 8(b) with 1.0  , the first commuter of group 

1 leaves home significantly later than the first commuter from group 2. Hence, it is 

conceivable that under fixed-rate merging rule, when the stochastic downstream capacity 

converges to the deterministic case, commuters of group 1 would benefit more than group 

2 commuters.  
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Fig. 8. Cumulative departures under fixed-rate merging rule under (a) a stochastic bottleneck and 

(b) a deterministic bottleneck. 

 

Fig. 9 depicts the queue lengths at each of the three bottlenecks under fixed-rate 

merging rule under a stochastic ( 0.8  ) and the deterministic case 1.0  . It can be 

seen that both upstream bottlenecks are controlled and the queue length at downstream 

bottleneck d  according to mean capacity ˆds  is the most, followed by upstream 
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bottleneck 2 according to capacity 2s  and then upstream bottleneck 1 according to 

capacity 1s . We can also see that, the total queuing delay (i.e. the area under the three 

curves representing queue length) under the stochastic case is bigger than that under the 

deterministic case; their values are respectively 0.7059 and 0.5865. This implies that the 

downstream bottleneck becomes much more congested when considering stochastic 

bottleneck capacity than that of the deterministic case. On the other hand, the queue 

lengths of upstream bottlenecks are slightly higher in the deterministic case than in the 

stochastic case.  
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Fig. 9. Queue length under fixed-rate merging rule at (a) a stochastic bottleneck and (b) a 

deterministic bottleneck. 

 

For comparison with the priority merging case, we also set 1 0.8s  , 2 0.8s  and 

0.8ds   to investigate the change of time-varying arrival rate at downstream bottleneck 

with the variability of downstream capacity under fixed-rate merging. The equilibrium 

arrival rates are shown in Figure 10. Clearly, the arrival rates converge to that of the 

deterministic merge model when   approaches to one. This is consistent with 

Proposition 6. 
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Using the same parameter setting as in Figure 7, we consider both links 1 and 2 are 

controlled by ramp metering. Then commuter from each origin has to traverse two 

bottlenecks to the destination.  Figure 11 shows the mean trip cost and its individual 

component costs: mean travel time cost, the mean schedule delay early and late costs 

(SDE and SDL) for the two groups of commuters under fixed-rate merging rule. 

Compared to the results in Fig. 7, we can observe that the cost patterns for group 2 

remain unchanged with respect to give-way merging rule, whilst for group 1, in 

equilibrium, commuters depart earlier and endure larger trip cost by ramp metering. 
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Fig. 10. Influence of parameter   on the arrival rate at downstream bottleneck under fixed-rate 

merging.  
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Fig. 11. Mean trip cost and its individual component costs of (a) group 1 and (b) group 2 under 

fixed-rate merging.  
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Fig. 12. Variation of the individual cost and the system cost with 2s under fixed-rate merging rule. 

Figure 12 shows the variation of the individual trip cost of both group and the system 

cost with capacity 2s . It is clear that the mean trip cost of group 1 and the system cost 

both increase with increasing capacity 2s , whilst the individual trip costs of group 2 

remain unchanged. This is consistent with Theorem 2. 
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Fig. 13. Variation of the total travel cost with  -value under both merging rules.  

 

Fig. 13 shows the total travel costs (system cost) generated under both give-way 

metering and fixed-rate metering rules. Under both metering rules, the total travel cost 

decreases as the  -value increases. The cost difference between the two rules increases 

with  -value and reaches its maximum at 1.0  . 
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Fig.14. Variation of the system trip cost against various demands under (a) the give-way merging 

and (b) the fixed-rate merging. 

 

Figure 14 depicts the system trip costs for both rules when the demands 1N  and 2N  

between the intervals [0.5, 0.8] and [1.8, 2.1], respectively. It is clear that the total trip 

cost increases with respect to the demands 1N  and 2N  growing up under both merging 

rules. 
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Fig. 15. Variation of the difference in system trip cost between the two merging rules against 

various demands under (a) a stochastic bottleneck and (b) a deterministic bottleneck.  

 

Finally, we investigate the changes of the system trip costs under both merging rules. 

We vary the demands 1N  and 2N  between the intervals [0.5, 0.8] and [1.8, 2.1], 

respectively. We show in Fig. 15 contour plots how the difference in total system trip 

cost between the two merging rules varies with upstream demands 1N  and 2N . The 

numbers in Fig. 15 represent the difference between the system trip cost under the give-

way rule and that under the fixed-rate rule. We can see that the system trip cost under the 

give-way merging rule is always smaller than that under the fixed-rate merging rule. 

When the value of parameter   is one, the difference becomes larger. This conclusion is 
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subject to the conditions that 1 1N s  and  2 2N s , which is due to the assumption for the 

give-way merging but not the fixed rate merging rule. 

 

4.3. Remarks  

This paper extends the classic bottleneck model to consider a Y-shaped merge 

network and day-to-day degradation of downstream bottleneck capacity simultaneously. 

The purpose of this paper is first to capture the commuters’ departure time choice 

behavior with the minimized expected travel cost. The paper also aims to demonstrate 

that the capacity increasing paradox also occurs under different merging rules by 

considering travel time variability, in particular, in terms of stochastic merge capacity.  

Two merging rules are considered for this Y-shaped corridor network: give-way  

merging and fixed-rate merging. For the give-way merging, it states that traffic from link 

2 is controlled, whilst for the fixed-rate merging, traffic from both upstream links are 

controlled and they merge at a rate not exceeding their respective bottleneck capacity 1s  

and 2s . Equilibrium departure time patterns are derived for both cases.  

It is observed that there are four possible arrival-time intervals in this corridor when 

users always arrive early, they can arrive early or late, always arrive late and incur a 

queuing delay, or always arrive late and may not incur a queuing delay. Under the give-

way rule, group 1 can only experience the first two situations. However, when both 

upstream links are controlled in the fixed-rate rule, group 1 would experience the first 

three situations, not the last one.  

Our analytical and numerical results suggest that, when experiencing uncertainty in 

network supply (represented in terms of bottleneck capacity here), commuters will 

respond by shifting their temporal travel patterns. They compensate for the uncertainty by 

departing earlier. The overall peak period is longer and total travel cost is higher with 

larger stochasticity in bottleneck capacity.  

Capacity paradoxes are found under both give-way and fixed-rate rules for upstream 

link 2, such that the total network trip cost (the system trip cost) rises as the capacity of 

the upstream capacity increases, but the effectiveness on the two groups are different. 

Under both rules, an upstream capacity increase results in an increase of individual trip 
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cost of group 1, however, the mean trip cost of group 2 remains unchanged. Furthermore, 

we find that, compared to give-way merging, the fixed-rate merging can advance the 

earliest departure time of group 1, whilst the earliest departure time for group 2 is 

unaffected. 

These results have strong policy implications. Firstly, the increased travel costs and 

lengthened peak period under stochastic conditions both have impact on the evaluation of 

a network performance, and need to be appropriately accounted for in the formal 

appraisal of a congested network and of a new transport scheme. Secondly, the capacity 

paradox identified here suggests that expanding network capacity, if not fully considering 

the reactions of travelers, could adversely reduce the efficiency of a congested network. 

This suggests that it may be counter-productive to solve road congestion by increasing 

road capacity, at least in the short term. Furthermore, the design and construction of 

highway networks should be carefully determined in terms of layout and control rules, as 

our results show that depending on the control mechanism (merging rules), metering one 

upstream bottleneck can be beneficial, whilst metering the other can be harmful. 

It is worth noting that, in this paper, a simple uniform capacity distribution is adopted, 

and a simple travel cost function of departure time choice and simple user equilibrium 

(UE) condition are assumed. These assumptions are made to facilitate an analytical 

solution. It may be possible that some of these assumptions could be relaxed; we will 

investigate this in our future work. 

There are a number of possible extensions to the existing study on stochastic capacity. 

Firstly, it may be possible to extend the analysis on the capacity paradox to a more 

general network by exploiting the analytical formula of the solution derived in this paper. 

It would be interesting to see if the capacity paradox exists in a general network. 

Secondly, it would be interesting to analyze more realistic cases where the assumption of 

UE condition is relaxed, for example, to consider the variance of trip cost along with 

travelers’ risk preferences in choosing an appropriate departure time (see Siu and Lo, 

2013). Finally, the studies on stochastic capacity should be extended to consider the case 

with physical queues which has shown to cause very complex phenomena (e.g. Lago and 

Daganzo, 2007); comprehensive studies on this topic would be indispensable for a clear 

understanding of the properties of dynamic network flows. 
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5.  Conclusions  

In this paper, we extend the Vickrey’s bottleneck theory to include a stochastic 

bottleneck capacity in a Y-shaped merge network. The stochastic capacity is considered 

to be a result of the merging interactions. Each commuter using the merge network is 

assumed to have the same travel cost function which consists of time-varying costs due to 

queuing delay (waiting time in a queue) and schedule delay (the time difference between 

his/her actual and desired arrival time at the work place). To obtain the equilibrium traffic 

pattern of this model, we assumed the downstream capacity follows a uniform 

distribution and the commuters’ departure time choice follows UE principle in terms of 

their mean trip costs.  

Considering the possibility that some commuters pass of one or both bottlenecks 

during the morning peak, we have developed the model under two merging rules, namely 

a give-way merging and a fixed-rate merging. We derive the analytical solutions and 

provide numerical results for both scenarios. The results show that uncertainty in the 

downstream bottleneck capacity increases the commuters’ mean trip cost and lengthens 

the peak period. Moreover, a capacity paradox is found under both merging rules for 

bottleneck 2, such that expanding one of the upstream bottlenecks may adversely increase 

the total network trip cost (the system trip cost). Furthermore, we find that, compared to 

give-way merging, the fixed-rate merging can advance the earliest departure time of 

group 1, whilst the earliest departure time for group 2 remains unchanged.  

The contribution of this paper to the existing literature (such as Arnott et al., 1993b; 

Lago and Daganzo, 2007; Daniels et al., 2009), is on the consideration of a stochastic 

bottleneck capacity in a merging network under two different merging rules. We show 

empirical observations on capacity fluctuations (Fig.1), and demonstrate through our 

modeling results the impact of stochastic capacity on trip cost and travel patterns. 

Understanding such cause-and-effect would help transport managers to better predict the 

impact of network supply changes on travel patterns and resulting traffic congestion. 

Furthermore, the study reveals a capacity paradox in that increasing the capacity of one 
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of the upstream links would result in an increase in total travel cost. Such modeling result 

will also have real-world implication, for example, in deciding whether/where a capacity 

improvement scheme is due and what affect that may have. 

For future work, we will further extend the stochastic merge model to investigate 

various congestion toll schemes and metering policies. In addition, we will consider risk 

preference, demand uncertainty, multiple transport modes and flexible work schedule in 

the model development. 

 

Acknowledgments 

This work was supported by the National Basic Research Program of China 

(2012CB725401), the PhD Student Innovation Fund of Beihang University (302976) and 

the China Scholarship Council which supported the lead author on a one-year study visit 

to the University of Leeds. 

 

 

Appendix 1. Derivation of arrival rate at downstream bottleneck for give-way 

merging  

Ignoring the travel time along the link from the origin to the merging point, the 

departure time window 02 2[ , ]et t  of group 1 is also the arrival time window of commuters at 

downstream bottleneck. We consider here the equilibrium arrival behaviour at the 

stochastic downstream bottleneck. The time window 0
2 2[ , ]et t  is divided into four intervals 

according to the schedule delay and queuing delay experienced by commuters. We 

consider * 0t  for simplicity.  

In 0
2[ , ]t t , there is no schedule delay late, the expected travel cost of a commuter who 

arrives at downstream bottleneck at time t , is 

  0 0
2 2

( ) ( )
( ) ( )d ( )d ,

d d

d ds s

s sR t R t
E C t t t f s s t f s s

s s 
            

      

where ( )f s  is the probability density function of the stochastic capacity, 

 ( ) 1 d df s s s  . At equilibrium,  ( )E C t  must be constant, i.e.  d ( ) d 0E C t t  

which directly leads to 
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0
2( ) ,    ,  

 d tr t s t t


 
   

where   11 ln     . 

In ( , ]t t  , both schedule delay early and late may occur, we then have 

  0
2

0 0
2 2( )

( ) ( )
( ) ( )d ( )d

d d

ds R t t

s sR t R t
E C t t t f s s t f s s

s s
 



           
      

0
2( ) 0

2

( )
( )d

    
 

R t t

s

R t
t f s s

s
 . 

Letting  d ( ) d 0E C t t  leads to 

 
( ) ,    

ln ( ) 1
r t t t t

A B R t  


  
 

, 

where 
    

 

1 0
2ln ln( ) 1

1

    



d

d

t s
A

s

    


, 

 1




 d

B
s

 


.  

In ( , ]st t , there is no schedule early, we have 

  0 0
2 2

( ) ( )
( ) ( )d ( )d

d d

d ds s

s sR t R t
E C t t t f s s t f s s

s s 
           

     . 

Letting  d ( ) d 0E C t t  gives 

 
1

1
( ) ,    

ln 


    

 
d

d s

s
r t s t t t

  
    

. 

In 2( , ]e
st t , there is no schedule early but queue may exist. We can find a watershed 

capacity of the bottleneck such that the queuing length equals zero, i.e.  0
2( )R t s t t  , 

and hence the watershed capacity is  0
2( )R t t t . We then have 

  0 0
2 2

0
2

( ) ( )
0 0

( )2 2

( ) ( )
( ) ( )d ( )d ( )d

d

d d

R t R t

t t t t
R t

t t

s

s s

R t R t
E C t t t f s s t f s s tf s s
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Letting  d ( ) d 0E C t t  leads to 
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Appendix 2. Proof of Theorem 1  

Differentiating Eq. X(34)X with respect to ds  and 2s , respectively , we have 

 
   

* 1 2
2 2

2 1


   

d

d

N N
C s

ks




, 

 *
2 2 0C s   , 

where           . Therefore, to prove *
2 0dC s   , we only need to prove 

2 1 0 k . Since   , and beta is a positive value, then    . From Eq. (25), we 

have 

 2

( ) ( )
1

( ) ( )
k

       
       
   

  
   

. 

Thus, 2 1 0k    holds.  

Substituting Eq. (24) and Eq. X(32)X into Eq. X(35)X and re-arranging it, we get 

 
 
 

* 0 01 1
1 2 2

21

  
       

e

d

N N
C t t

s s

 
  


, 

where 
 2

1 exp
  

  
 

e s A B
N

B


. Taking the first-order derivative with respect to ds  

and 2s , respectively, leads to 

 
 1*

1 1

      
   

e
d

d
d

N s
C s

s

 


, 

 
   

* 1 1
1 2 2

2 2
1

 
     

 

e

d

N N
C s

s s s

  


. 

For proving *
1 0dC s   , we only need to prove the derivative of 1

e
dN s  be positive. 

This is true as 
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1 2 1

12 2

2 (1 )
0

   
  



e e
d d e

d d d

N s s s N
N

s s s

   
. 

So, *
1 0dC s    holds.  

Substituting 1
eN  into *

1C , using the equation  0
1 1 2 1 2 1( )    e e

dR t N s t t N  and 

differentiating *
1C  with respect to 2s , we obtain 

 
 
       

* 1 1
1 2 1 12 2 2

2 2 2 2

0
1

 
        

 

e
e

d

N N
C s N N

s s s s s

   


. 

Noting * *
1 1 2 2TC N C N C  , we then conclude 

 
* *
1 2

1 2 0
  

  
  d d d

TC C C
N N

s s s
, 

 
* *
1 2

1 2
2 2 2

0
  

  
  
TC C C

N N
s s s

. 

This completes the proof. 

 

Appendix 3. Proof of Theorem 2 

From Theorem 1 Eqs. (24) and (29), we have  

 
     2 10 0 0 1

1 2 2
2 1 2

( ) ( )   
     


d dd d

s s s ss sN
t t t

s s s

       
 

. 

By denoting 

 
     2 10 1

2
1

( ) ( )   
   


d ds s s s N

h t
s

      

 
, 

we get 0 0
1 2 2  dt t h s s . To be consistent with the premise * *

2 1C C , 0 0
1 2 0t t   is 

required, then 0h  .  

Considering the equilibrium condition * 0
1 1 1( )   C E C t , we have 

     * 0 0 0
1 2 1 2 2( )    dC s s t t t     . 

Note that 0
2 1 0  t s  and 0

2 2 0t s    hold. The first derivate of the travel cost *
1C  with 

respect to 1s  and 2s , respectively, can be written as follows, 
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Since 0h  ,   2 ( ) 0  ds s     and  

 
  

 
2 1

2
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0

 
  

 
ds sh N
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 1

2 1

1
0
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h N

s ss

 
  

, 

*
1 1 0C s    and *

1 2 0C s    hold.  

Let   2 ( )dg s s      , and the first derivate of the travel cost *
1C  with respect to 

ds  can be calculated as follows, 

   
* *

0 0 0 01 2
1 2 1 2

d d d d

C C g
t t g t t

s s s s

   
    

   
, 

Since     0 0
1 2 1 1 2 0dt t s N s s        ,     2

2 0d dg s s s       , 0g  , 

0 0
1 2 0t t  , and  from the Equation X(34)X, we get *

2 0dC s   . Hence *
1 0dC s    hold. 

Considering *
2 1 0C s   , *

2 2 0C s    and , we furthermore conclude  
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1 2

1 2
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0
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This completes the proof.  
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