817 research outputs found

    Proximity under threat: The role of physical distance in intergroup relations

    Get PDF
    Throughout human history, social groups have invested immense amounts of wealth and time to keep threatening out-groups at a distance. In the current research, we explored the relationship between intergroup threat, physical distance, and discrimination. Specifically, we examined how intergroup threat alters estimates of physical distance to out-groups and how physical proximity affects intergroup relations. Previous research has found that people judge threatening out-groups as physically close. In Studies 1 and 2, we examined ways to attenuate this bias. In Study 1 a secure (vs. permeable) US-Mexico border reduced the estimated proximity to Mexico City among Americans who felt threatened by Mexican immigration. In Study 2, intergroup apologies reduced estimates of physical proximity to a threatening cross-town rival university, but only among participants with cross-group friendships. In Study 3, New York Yankees fans who received an experimental induction of physical proximity to a threatening out-group (Boston Red Sox) had a stronger relationship between their collective identification with the New York Yankees and support for discriminatory policies toward members of the out-group (Red Sox fans) as well as how far they chose to sit from out-group members (Red Sox fans). Together, these studies suggest that intergroup threat alters judgment of physical properties, which has important implications for intergroup relations

    Relation between flux formation and pairing in doped antiferromagnets

    Full text link
    We demonstrate that patterns formed by the current-current correlation function are landmarks which indicate that spin bipolarons form in doped antiferromagnets. Holes which constitute a spin bipolaron reside at opposite ends of a line (string) formed by the defects in the antiferromagnetic spin background. The string is relatively highly mobile, because the motion of a hole at its end does not raise extensively the number of defects, provided that the hole at the other end of the line follows along the same track. Appropriate coherent combinations of string states realize some irreducible representations of the point group C_4v. Creep of strings favors d- and p-wave states. Some more subtle processes decide the symmetry of pairing. The pattern of the current correlation function, that defines the structure of flux, emerges from motion of holes at string ends and coherence factors with which string states appear in the wave function of the bound state. Condensation of bipolarons and phase coherence between them puts to infinity the correlation length of the current correlation function and establishes the flux in the system.Comment: 5 pages, 6 figure

    Resistance distance, information centrality, node vulnerability and vibrations in complex networks

    Get PDF
    We discuss three seemingly unrelated quantities that have been introduced in different fields of science for complex networks. The three quantities are the resistance distance, the information centrality and the node displacement. We first prove various relations among them. Then we focus on the node displacement, showing its usefulness as an index of node vulnerability.We argue that the node displacement has a better resolution as a measure of node vulnerability than the degree and the information centrality

    The molecular systems composed of the charmed mesons in the HSˉ+h.c.H\bar{S}+h.c. doublet

    Full text link
    We study the possible heavy molecular states composed of a pair of charm mesons in the H and S doublets. Since the P-wave charm-strange mesons Ds0(2317)D_{s0}(2317) and Ds1(2460)D_{s1}(2460) are extremely narrow, the future experimental observation of the possible heavy molecular states composed of Ds/DsD_s/D_s^\ast and Ds0(2317)/Ds1(2460)D_{s0}(2317)/D_{s1}(2460) may be feasible if they really exist. Especially the possible JPC=1J^{PC}=1^{--} states may be searched for via the initial state radiation technique.Comment: 42 pages, 4 tables, 31 figures. Improved numerical results and Corrected typos

    Excitation function of elliptic flow in Au+Au collisions and the nuclear matter equation of state

    Full text link
    We present measurements of the excitation function of elliptic flow at midrapidity in Au+Au collisions at beam energies from 0.09 to 1.49 GeV per nucleon. For the integral flow, we discuss the interplay between collective expansion and spectator shadowing for three centrality classes. A complete excitation function of transverse momentum dependence of elliptic flow is presented for the first time in this energy range, revealing a rapid change with incident energy below 0.4 AGeV, followed by an almost perfect scaling at the higher energies. The equation of state of compressed nuclear matter is addressed through comparisons to microscopic transport model calculations.Comment: 10 pages, 4 eps figures, submitted for publication. Data files will be available at http://www.gsi.de/~fopiwww/pub

    Systematics of pion emission in heavy ion collisions in the 1A GeV regime

    Full text link
    Using the large acceptance apparatus FOPI, we study pion emission in the reactions (energies in GeV/nucleon are given in parentheses): 40Ca+40Ca (0.4, 0.6, 0.8, 1.0, 1.5, 1.93), 96Ru+96Ru (0.4, 1.0, 1.5), 96Zr+96Zr (0.4, 1.0, 1.5), 197Au+197Au (0.4, 0.6, 0.8, 1.0, 1.2, 1.5). The observables include longitudinal and transverse rapidity distributions and stopping, polar anisotropies, pion multiplicities, transverse momentum spectra, ratios for positively and negatively charged pions of average transverse momenta and of yields, directed flow, elliptic flow. The data are compared to earlier data where possible and to transport model simulations.Comment: 56 pages,42 figures; to be published in Nuclear Physics

    Separation of Anti-Proliferation and Anti-Apoptotic Functions of Retinoblastoma Protein through Targeted Mutations of Its A/B Domain

    Get PDF
    BACKGROUND: The human retinoblastoma susceptibility gene encodes a nuclear phosphoprotein RB, which is a negative regulator of cell proliferation. The growth suppression function of RB requires an evolutionarily conserved A/B domain that contains two distinct peptide-binding pockets. At the A/B interface is a binding site for the C-terminal trans-activation domain of E2F. Within the B-domain is a binding site for proteins containing the LxCxE peptide motif. METHODOLOGY/PRINCIPLE FINDINGS: Based on the crystal structure of the A/B domain, we have constructed an RB-K530A/N757F (KN) mutant to disrupt the E2F- and LxCxE-binding pockets. The RB-K530A (K) mutant is sufficient to inactivate the E2F-binding pocket, whereas the RB-N757F (N) mutant is sufficient to inactivate the LxCxE-binding pocket. Each single mutant inhibits cell proliferation, but the RB-KN double mutant is defective in growth suppression. Nevertheless, the RB-KN mutant is capable of reducing etoposide-induced apoptosis. CONCLUSION/SIGNIFICANCE: Previous studies have established that RB-dependent G1-arrest can confer resistance to DNA damage-induced apoptosis. Results from this study demonstrate that RB can also inhibit apoptosis independent of growth suppression

    The σ\sigma pole in J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^-

    Full text link
    Using a sample of 58 million J/ψJ/\psi events recorded in the BESII detector, the decay J/ψωπ+πJ/\psi \to \omega \pi^+ \pi^- is studied. There are conspicuous ωf2(1270)\omega f_2(1270) and b1(1235)πb_1(1235)\pi signals. At low ππ\pi \pi mass, a large broad peak due to the σ\sigma is observed, and its pole position is determined to be (541±39)(541 \pm 39) - ii (252±42)(252 \pm 42) MeV from the mean of six analyses. The errors are dominated by the systematic errors.Comment: 15 pages, 6 figures, submitted to PL
    corecore