8 research outputs found

    Embedded ZnO nanorods and gas-sensing properties

    Get PDF
    Regular hexagonal embedded ZnO nanorods were successfully prepared by a simple hydrothermal method. The addition of urea as a homogeneous precursor was found to play a vital role in the embedding of secondary nanorods. The nanostructures were characterized by XRD, SEM, and EDS. The gas-sensing properties of secondary grown embedded nanorods were reported for formaldehyde, ethanol, methanol, acetone, and ammonia at different concentrations and temperatures. A higher response and greater selectivity toward formaldehyde than other gases was observed. A sharp response with the best recovery time was achieved at an optimum temperature of 200 °C

    Role of gallium wetting layer in high-quality ZnO growth on sapphire (0001) substrates

    No full text
    A Ga wetting layer was used to modify the surface structure of sapphire (0001) substrate to prepare high-quality ZnO film by radio frequency plasma-assisted molecule beam epitaxy. We found that this Ga layer plays a crucial role in eliminating 30° rotation domains, controlling polarity and decreasing defect density in ZnO epilayers, as demonstrated by in situ reflection high energy electron diffraction,ex situ high resolution X-ray diffraction and high resolution cross-sectional transmission electron microscopy. Zn-polar film of ZnO was determined by convergent beam electron diffraction. A Ga bilayer model is proposed to understand the effects of the Ga wetting layer on high-quality ZnO growth

    Global diversity and biogeography of DNA viral communities in activated sludge systems

    No full text
    Abstract Background Activated sludge (AS) systems in wastewater treatment plants (WWTPs) harbor enormous viruses that regulate microbial metabolism and nutrient cycling, significantly influencing the stability of AS systems. However, our knowledge about the diversity of viral taxonomic groups and functional traits in global AS systems is still limited. To address this gap, we investigated the global diversity and biogeography of DNA viral communities in AS systems using 85,114 viral operational taxonomic units (vOTUs) recovered from 144 AS samples collected across 54 WWTPs from 13 different countries. Results AS viral communities and their functional traits exhibited distance-decay relationship (DDR) at the global scale and latitudinal diversity gradient (LDG) from equator to mid-latitude. Furthermore, it was observed that AS viral community and functional gene structures were largely driven by the geographic factors and wastewater types, of which the geographic factors were more important. Carrying and disseminating auxiliary metabolic genes (AMGs) associated with the degradation of polysaccharides, sulfate reduction, denitrification, and organic phosphoester hydrolysis, as well as the lysis of crucial functional microbes that govern biogeochemical cycles were two major ways by which viruses could regulate AS functions. It was worth noting that our study revealed a high abundance of antibiotic resistance genes (ARGs) in viral genomes, suggesting that viruses were key reservoirs of ARGs in AS systems. Conclusions Our results demonstrated the highly diverse taxonomic groups and functional traits of viruses in AS systems. Viral lysis of host microbes and virus-mediated HGT can regulate the biogeochemical and nutrient cycles, thus affecting the performance of AS systems. These findings provide important insights into the viral diversity, function, and ecology in AS systems on a global scale. Video Abstrac
    corecore