356 research outputs found

    Effect of annealing on the performance of CrO3/ZnO light emitting diodes

    Get PDF
    Heterojunction CrO3/ZnO light emitting diodes have been fabricated. Their performance was investigated for different annealing temperature for ZnO nanorods. Annealing in oxygen atmosphere had significant influence on carrier concentration in the nanorods, as well as on the emission spectra of the nanorods. Surprisingly, annealing conditions, which yield the lowest band edge-to-defect emission ratio in the photoluminescence spectra, result in the highest band edge-to-defect emission ratio in the electroluminescence spectra. The influence of the native defects on ZnO light emitting diode performance is discussed. © 2009 American Institute of Physics.published_or_final_versio

    A Novel Strategy to Screen Bacillus Calmette-Guérin Protein Antigen Recognized by γδ TCR

    Get PDF
    BACKGROUND: Phosphoantigen was originally identified as the main γδ TCR-recognized antigen that could activate γδ T cells to promote immune protection against mycobacterial infection. However, new evidence shows that the γδ T cells activated by phosphoantigen can only provide partial immune protection against mycobacterial infection. In contrast, whole lysates of Mycobacterium could activate immune protection more potently, implying that other γδ TCR-recognized antigens that elicit protective immune responses. To date, only a few distinct mycobacterial antigens recognized by the γδ TCR have been characterized. METHODOLOGY/PRINCIPAL FINDINGS: In the present study, we established a new approach to screen epitopes or protein antigens recognized by the γδ TCR using Bacillus Calmette-Guérin- (BCG-) specific γ TCR transfected cells as probes to pan a 12-mer random-peptide phage-displayed library. Through binding assays and functional analysis, we identified a peptide (BP3) that not only binds to the BCG-specific γδ TCR but also effectively activates γδ T cells isolated from human subjects inoculated with BCG. Importantly, the γδ T cells activated by peptide BP3 had a cytotoxic effect on THP-1 cells infected with BCG. Moreover, the oxidative stress response regulatory protein (OXYS), a BCG protein that matches perfectly with peptide BP3 according to bioinformatics analysis, was confirmed as a ligand for the γδ TCR and was found to activate γδ T cells from human subjects inoculated with BCG. CONCLUSIONS/SIGNIFICANCE: In conclusion, our study provides a novel strategy to identify epitopes or protein antigens for the γδ TCR, and provides a potential means to screen mycobacterial vaccines or candidates for adjuvant

    Large-scale Synthesis of β-SiC Nanochains and Their Raman/Photoluminescence Properties

    Get PDF
    Although the SiC/SiO2 nanochain heterojunction has been synthesized, the chained homogeneous nanostructure of SiC has not been reported before. Herein, the novel β-SiC nanochains are synthesized assisted by the AAO template. The characterized results demonstrate that the nanostructures are constructed by spheres of 25–30 nm and conjoint wires of 15–20 nm in diameters. Raman and photoluminescence measurements are used to explore the unique optical properties. A speed-alternating vapor–solid (SA-VS) growth mechanism is proposed to interpret the formation of this typical nanochains. The achieved nanochains enrich the species of one-dimensional (1D) nanostructures and may hold great potential applications in nanotechnology

    Hyperglycemic Myocardial Damage Is Mediated by Proinflammatory Cytokine: Macrophage Migration Inhibitory Factor

    Get PDF
    Diabetes has been regarded as an inflammatory condition which is associated with left ventricular diastolic dysfunction (LVDD). The purpose of this study was to examine the expression levels of macrophage migration inhibitory factor (MIF) and G protein-coupled receptor kinase 2 (GRK2) in patients with early diabetic cardiomyopathy, and to investigate the mechanisms involved in MIF expression and GRK2 activation.83 patients in the age range of 30-64 years with type 2 diabetes and 30 matched healthy men were recruited. Left ventricular diastolic function was evaluated by cardiac Doppler echocardiography. Plasma MIF levels were determined by ELISA. To confirm the clinical observation, we also studied MIF expression in prediabetic rats with impaired glucose tolerance (IGT) and relationship between MIF and GRK2 expression in H9C2 cardiomyoblasts exposed to high glucose.Compared with healthy subjects, patients with diabetes have significantly increased levels of plasma MIF which was further increased in diabetic patients with Left ventricular diastolic dysfunction (LVDD). The increased plasma MIF levels in diabetic patients correlated with plasma glucose, glycosylated hemoglobin and urine albumin levels. We observed a significant number of TUNEL-positive cells in the myocardium of IGT-rats but not in the control rats. Moreover, we found higher MIF expression in the heart of IGT with cardiac dysfunction compared to that of the controls. In H9C2 cardiomyoblast cells, MIF and GRK2 expression was significantly increased in a glucose concentration-dependant manner. Furthermore, GRK2 expression was abolished by siRNA knockdown of MIF and by the inhibition of CXCR4 in H9C2 cells.Our findings indicate that hyperglycemia is a causal factor for increased levels of pro-inflammatory cytokine MIF which plays a role in the development of cardiomyopathy occurring in patients with type 2 diabetes. The elevated levels of MIF are associated with cardiac dysfunction in diabetic patients, and the MIF effects are mediated by GRK2

    Nuclear localised more sulphur accumulation1 epigenetically regulates sulphur homeostasis in Arabidopsis thaliana

    Get PDF
    Sulphur (S) is an essential element for all living organisms. The uptake, assimilation and metabolism of S in plants are well studied. However, the regulation of S homeostasis remains largely unknown. Here, we report on the identification and characterisation of the more sulphur accumulation1 (msa1-1) mutant. The MSA1 protein is localized to the nucleus and is required for both S adenosylmethionine (SAM) production and DNA methylation. Loss of function of the nuclear localised MSA1 leads to a reduction in SAM in roots and a strong S-deficiency response even at ample S supply, causing an over- accumulation of sulphate, sulphite, cysteine and glutathione. Supplementation with SAM suppresses this high S phenotype. Furthermore, mutation of MSA1 affects genome-wide DNA methylation, including the methylation of S-deficiency responsive genes. Elevated S accumulation in msa1-1 requires the increased expression of the sulphate transporter genes SULTR1;1 and SULTR1;2 which are also differentially methylated in msa1-1. Our results suggest a novel function for MSA1 in the nucleus in regulating SAM biosynthesis and maintaining S homeostasis epigenetically via DNA methylation

    A Meta-Analysis of Array-CGH Studies Implicates Antiviral Immunity Pathways in the Development of Hepatocellular Carcinoma

    Get PDF
    BACKGROUND: The development and progression of hepatocellular carcinoma (HCC) is significantly correlated to the accumulation of genomic alterations. Array-based comparative genomic hybridization (array CGH) has been applied to a wide range of tumors including HCCs for the genome-wide high resolution screening of DNA copy number changes. However, the relevant chromosomal variations that play a central role in the development of HCC still are not fully elucidated. METHODS: In present study, in order to further characterize the copy number alterations (CNAs) important to HCC development, we conducted a meta-analysis of four published independent array-CGH datasets including total 159 samples. RESULTS: Eighty five significant gains (frequency ≥ 25%) were mostly mapped to five broad chromosomal regions including 1q, 6p, 8q, 17q and 20p, as well as two narrow regions 5p15.33 and 9q34.2-34.3. Eighty eight significant losses (frequency ≥ 25%) were most frequently present in 4q, 6q, 8p, 9p, 13q, 14q, 16q, and 17p. Significant correlations existed between chromosomal aberrations either located on the same chromosome or the different chromosomes. HCCs with different etiologies largely exhibited surprisingly similar profiles of chromosomal aberrations with only a few exceptions. Furthermore, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis indicated that the genes affected by these chromosomal aberrations were significantly enriched in 31 canonical pathways with the highest enrichment observed for antiviral immunity pathways. CONCLUSIONS: Taken together, our findings provide novel and important clues for the implications of antiviral immunity-related gene pathways in the pathogenesis and progression of HCC

    Identification of a biomarker panel for improvement of prostate cancer diagnosis by volatile metabolic profiling of urine

    Get PDF
    Background: The lack of sensitive and specific biomarkers for the early detection of prostate cancer (PCa) is a major hurdle to improve patient management. Methods: A metabolomics approach based on GC-MS was used to investigate the performance of volatile organic compounds (VOCs) in general and, more specifically, volatile carbonyl compounds (VCCs) present in urine as potential markers for PCa detection. Results: Results showed that PCa patients (n = 40) can be differentiated from cancer-free subjects (n = 42) based on their urinary volatile profile in both VOCs and VCCs models, unveiling significant differences in the levels of several metabolites. The models constructed were further validated using an external validation set (n = 18 PCa and n = 18 controls) to evaluate sensitivity, specificity and accuracy of the urinary volatile profile to discriminate PCa from controls. The VOCs model disclosed 78% sensitivity, 94% specificity and 86% accuracy, whereas the VCCs model achieved the same sensitivity, a specificity of 100% and an accuracy of 89%. Our findings unveil a panel of 6 volatile compounds significantly altered in PCa patients' urine samples that was able to identify PCa, with a sensitivity of 89%, specificity of 83%, and accuracy of 86%. Conclusions: It is disclosed a biomarker panel with potential to be used as a non-invasive diagnostic tool for PCa.info:eu-repo/semantics/publishedVersio

    The JAK-STAT Pathway Controls Plasmodium vivax Load in Early Stages of Anopheles aquasalis Infection

    Get PDF
    Malaria affects 300 million people worldwide every year and 450,000 in Brazil. In coastal areas of Brazil, the main malaria vector is Anopheles aquasalis, and Plasmodium vivax is responsible for the majority of malaria cases in the Americas. Insects possess a powerful immune system to combat infections. Three pathways control the insect immune response: Toll, IMD, and JAK-STAT. Here we analyze the immune role of the A. aquasalis JAK-STAT pathway after P. vivax infection. Three genes, the transcription factor Signal Transducers and Activators of Transcription (STAT), the regulatory Protein Inhibitors of Activated STAT (PIAS) and the Nitric Oxide Synthase enzyme (NOS) were characterized. Expression of STAT and PIAS was higher in males than females and in eggs and first instar larvae when compared to larvae and pupae. RNA levels for STAT and PIAS increased 24 and 36 hours (h) after P. vivax challenge. NOS transcription increased 36 h post infection (hpi) while this protein was already detected in some midgut epithelial cells 24 hpi. Imunocytochemistry experiments using specific antibodies showed that in non-infected insects STAT and PIAS were found mostly in the fat body, while in infected mosquitoes the proteins were found in other body tissues. The knockdown of STAT by RNAi increased the number of oocysts in the midgut of A. aquasalis. This is the first clear evidence for the involvement of a specific immune pathway in the interaction of the Brazilian malaria vector A. aquasalis with P. vivax, delineating a potential target for the future development of disease controlling strategies
    corecore