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BACKGROUND: The lack of sensitive and specific biomarkers for the early detection of prostate cancer (PCa) is a major hurdle to

improve patient management.

METHODS: A metabolomics approach based on GC-MS was used to investigate the performance of volatile organic compounds
(VOCs) in general and, more specifically, volatile carbonyl compounds (VCCs) present in urine as potential markers for PCa

detection.

RESULTS: Results showed that PCa patients (n = 40) can be differentiated from cancer-free subjects (n = 42) based on their urinary
volatile profile in both VOCs and VCCs models, unveiling significant differences in the levels of several metabolites. The models
constructed were further validated using an external validation set (n =18 PCa and n = 18 controls) to evaluate sensitivity,
specificity and accuracy of the urinary volatile profile to discriminate PCa from controls. The YOCs model disclosed 78% sensitivity,
94% specificity and 86% accuracy, whereas the VCCs model achieved the same sensitivity, a specificity of 100% and an accuracy of
89%. Our findings unveil a panel of 6 volatile compounds significantly altered in PCa patients’ urine samples that was able to
identify PCa, with a sensitivity of 89%, specificity of 83%, and accuracy of 86%.

CONCLUSIONS: It is disclosed a biomarker panel with potential to be used as a non-invasive diagnostic tool for PCa.

British Journal of Cancer https://doi.org/10.1038/541416-019-0585-4

BACKGROUND

Prostate cancer (PCa) ranks second in cancer incidence and fifth in
mortality among men worldwide." Diagnostic strategies currently
available for patients with PCa rely on prostate biopsy (PB), which
is an invasive, unpleasant and potentially harmful procedure,
potentially missing clinically significant cancers due to tumour
heterogeneity.? Prostate cancer detection based on serum PSA
with a cut-off of 4.0 ng/ml has limited sensitivity (of 20.5%) and
specificity (ranging from 51 to 91%),>* and inability to differ-
entiate aggressive from indolent PCa,* leading to false negatives,
to overdiagnosis and consequent overtreatment.” The free/total
serum PSA ratio (fPSA/tPSA) has been proposed as an alternative.
However, it displays the opposite performance, with high
sensitivity but low specificity.® Globally, this entails the perfor-
mance of a large number of prostate biopsies, a significant
proportion of which is deemed unnecessary. Thus, the free/total
PSA ratio is not usually employed for risk-stratification of prostate
cancer, but only in selected cases. The reported values for the
sensitivity and specificity of this biomarker are very inconsistent
among different studies, nevertheless a recent meta-analysis
concluded that this biomarker shows a sensitivity of 70% and a

specificity of 58%.° Thus, intense efforts have been devoted for
development of PCa molecular biomarkers, some of which have
already obtained FDA approval, like prostate cancer antigen 3
(PCA3) or circulating tumour cells (CTs).” Notwithstanding, these
biomarkers also have important limitations, such as the definition
of a cut-off value (e.g., PCA3)” and low abundance at early stages
(e.g., CTs).” Thus, discovery and validation of novel PCa biomarkers
with improved sensitivity, non-invasive and able to detect early-
stage disease (when PCa is potentially curable) remains an
important research aim.

Metabolomics emerged as one of the most promising
approaches for discovery of new disease biomarkers as patholo-
gical conditions cause disruption of metabolic processes and
consequently change the production, use and levels of many
metabolites, resulting in a characteristic “metabolic signature” that
can be captured through metabolic profiling. Analysis of the
volatile part of the metabolome, i.e. the low molecular weight
volatile organic compounds (VOCs) present in the headspace (gas
phase) of clinical samples (e.g., biofluids as urine), is a promising
new screening tool for several cancers, including PCa.®>'® VOCs
are end products of cellular activities and alterations in VOCs
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profile may reflect modifications in gene activation, gene
expression, proteins and activity of enzymes involved in metabolic
pathways. These volatile molecules endow biological samples with
distinct odours which may even be detected by animals with
highly sensitive olfactory capabilities, such as dogs,'"'* or
sophisticated analytical instrumental techniques, such as gas
chromatography-mass spectrometry (GC-MS) combined with
multivariate statistical analysis (MVA)2'° In this regard, Smith
et al.® studied the urine metabolomics of 13 PCa patients and 24
controls using GC-MS, disclosing 91 VOCs and unveiling significant
differences between PCa and controls in 21 VOCs. However, this
study has important limitations namely a small sample size and
lack of external validation.® Khalid et al. performed the GC-MS
volatile profiling of urine from PCa patients using a larger number
of samples (n =59 PCa and n =43 controls). Overall, 196 VOCs
were identified from which four (2,6-dimethy-7-octen-2-ol, penta-
nal, 3-octanone, and 2-octanone) were found to be statistically
different between PCa and control samples.” More recently,
Jimenez-Pacheco et al. performed a similar study using 29 PCa
urine samples that were compared with 21 samples from patients
with benign prostatic hyperplasia (BPH). In this study, 57 VOCs
were identified, but only nine significantly differed between the
two groups, highlighting furan and p-xylene as potential PCa
biomarkers.”” Interestingly, 2-octanone®® and 2,6-dimethy-7-
octen-2-0l”"® were pointed as urinary PCa biomarkers in more
than one study. Taken together, these studies provide convincing
evidence that volatiles emanating from urine are potential
biomarkers for PCa detection. Recently, the feasibility and
potential of volatile signature for diagnosing PCa led to the
development of chemical system sensors (so-called “electronic
nose” or “e-nose”).'*' “E-noses” are designed to mimic the
mammalian olfactory system and provide a global characterisation
of the odorous mixtures.'® Remarkably, the application of the “e-
nose” technology to discriminate the odour of urine from patients
with PCa from controls provided better diagnostic performance
than serum PSA.">'*

Herein, we aimed to obtain a more comprehensive metabo-
lomic profiling of volatile metabolites in urine from PCa patients,
using a metabolomics approach based on headspace solid-phase
microextraction coupled with GC-MS (HS-SPME/GC-MS). Two
different sample preparation strategies were considered: (i) direct
analysis for VOCs detection and (ii) derivatisation with O-(2,3,4,5,6-
pentafluorobenzyl)hydroxylamine (PFBHA), prior to HS-SPME/GC-
MS analysis, to enhance the sensitive detection of volatile
carbonyl compounds (VCCs). An external validation set was then
used to validate a panel of discriminant volatile compounds with
clinical potential for PCa diagnosis. To the best of our knowledge,
this is the first time that VCCs are investigated as urinary PCa
biomarkers and that a volatile biomarker panel for PCa is validated
using an external set of samples.

METHODS

Chemicals

All chemicals used were of analytical grade. Benzaldehyde
(=99.5%), 2-butanone (=99%), (E)-2-butenal (=99%), cyclohexanone
(299%), 2-decanone (=98%), (E)-2-decenal (=92%), 2,5-dimethyl-
benzaldhyde (=99%), 3,4-dimethylcyclohex-3-ene-1-carbaldehyde
(297%), 2,6-dimethyl-6-hepten-2-ol (=96%), 3,7-dimethylocta-1,6-
dien-3-ol (=95%), 4-fluorobenzaldehyde (=98%), 2-furfural (=99%),
heptanal (=92%), 4-heptanone (=97%), hexadecane (=99%), (EE)-
24-hexadienal (=95%), hexanal (=98%), 2-hexanone (=98%), 2-
hydroxy-2-methyl-1-phenylpropan-1-one (=97%), 2-methylbutanal
(=90%), 3-methylbutanal (=97%), 2-methylcyclopentan-1-one
(=297%), 5-methyl-2-furfural (=99%), methylglyoxal (40% aqueous
solution), 5-methylheptan-2-one (=95%), 2-methylpropanal (=98%),
5-methyl-2-(propan-2-yl) cyclohexyl acetate (=98%), nonanal
(=95%), 2-nonanone (=97%), (E)-2-nonenal (=93%), octanal

(=98%), 2-octanone (=98%), pentanal (=97%), (E)-2-pentenal
(295%), 3-penten-2-one  (270%), 3-phenylpropionaldehyde
(=95%), PFBHA (=98%), phenylacetaldehyde (=90%), propanal

(=297%), terpinen-4-ol (=95%), 2,6,6,10-tetramethyl-1-oxaspiro[4.5]
dec-9-ene (=90%), and 3,7,7-trimethylbicyclo[4.1.0] hept-3-ene
(=97%) were purchased from Sigma-Aldrich (Madrid, Spain).
Butanal (=99%) and glyoxal (=95%) were purchased from Fluka
(Madrid, Spain) and 4-hydroxy-2-nonenal (=98%) was purchased
from Cayman Chemical (USA). Sodium chloride was obtained from
VWR (Leuven, Belgium).

Subjects

Early morning urine samples without fasting were collected from
PCa patients and controls at the Portuguese Oncology Institute of
Porto (IPO Porto) and frozen at —80°C until analysis. The study
protocol was approved by the local Ethics Committee and all
subjects provided their signed informed consent prior to
enrolment.

A cohort of 118 men were included in this study: 58 PCa
patients (age 52-77 years, mean 63) and 60 cancer-free control
subjects (age 56-66 years, mean 59). Both PCa and control groups
were randomly divided into two sets: (1) training (n =40 PCa and
n =42 controls for VOCs; n = 40 PCa and n = 40 controls for VCCs)
and (2) external validation (n=18 PCa and n=18 controls for
VOCs and VCCs). Control group consisted of subjects with age-
related comorbidities such as hypertension, diabetes, lipid
disorders and BPH, but without cancer. Detailed information on
Gleason score and some important biochemical and clinical
parameters of PCa patients and control subjects is provided in
Table 1.

Sample preparation and metabolites extraction

Urine samples were thawed at 4 °C. For VOCs analysis, 1 mL of
sample was placed in a 10 mL glass vial with 20 puL of internal
standard (IS) (10 ug/mL 4-fluorobenzaldehyde in ultrapure water)
and Nacl (0.27 g). To optimise the extraction conditions, a central
composite design (CCD) was performed (data not shown). The
optimal extraction conditions, using divinylbenzene/carboxen/
polydimethylsiloxane (DVB/CAR/ PDMS) fiber coating, were 11 min
of incubation and 30 min of extraction at 44 °C under continuous
stirring (250 rpm).

For VCCs analysis, 250 pL of urine were placed in a 10 mL glass
vial with 5 pL of IS (10 pg/mL 4-fluorobenzaldehyde in ultrapure
water) and 7.5pL of the derivatizing agent PFBHA (40g/L in
ultrapure water). Extraction was performed according to the
conditions previously optimised in our lab'® using a CombiPAL
automatic autosampler (Varian, Palo Alto, CA) and a polydimethyl-
siloxane/divinylbenzene (PDMS/DVB) fiber coating. Briefly, urine
samples were incubated at 62°C during 6 min, followed by
extraction of volatiles at the same temperature during 51 min,
under continuous stirring (250 rpm). After extraction, the fiber was
inserted into the GC system for thermal desorption of the analytes
at 250 °C during 5 min.

In both approaches, all samples were randomly injected, with
the quality control (QCs) samples being injected at the same
conditions on every eight samples. QCs were prepared as aliquots
of a pool of all urine samples (PCa and controls) considered in
this study.

GC-MS analysis

A Scion 436-gas chromatograph coupled to a Bruker single
quadrupole (SQ) equipped with a Scion SQ ion trap mass detector
and a Bruker Daltonics MS workstation software version 6.8, with a
Rxi-5Sil MS (30 m x 0.25 mm X 0.25 pym) column from RESTEK were
used. Briefly, the carrier gas was helium C-60 (Gasin, Portugal)
(flow rate 1 mL/min) and the injector port was heated at 230 °C.
The oven temperature was fixed at 40 °C for 1 min, increasing to
250°C (rate 5°C/min), held for 5 min, followed by increasing to



Identification of a biomarker panel for improvement of prostate cancer...
AR Lima et al.

Table 1. Demographic and clinical data of the PCa patients and cancer-free controls included in the training and validation sets
Characteristics Prostate cancer Control
Training External Training External Training External Training set  External set
set VOCs set VOCs set VCCs set VCCs set VOCs set VOCs VCCs VCCs
Number of subjects 40 18 40 42 18 40 18
Mean Age +SD 644+64 61.8+5.2 63.7+6.5 634+53 593+3.0 59.6 +2.62 593+28 59.8+2.7
(years)
PSA (ng/mL), n (%)

<4 3 (7.5%) 1 (5.6%) - 4 (22.2%) - - - -

4-10 24 (60%) 13 (72.2%) 28 (70%) 9 (50%) - - - -

>10 13 (32.5%) 4 (22.2%) 12 (30%) 5 (27.8%) - - - -
Gleason score, n (%)

<6 6 (15%) 3 (16.7%) 8 (20%) 1 (5.6%) - - - -

=7 25 (62.5%) 12 (66.7%) 24 (60%) 13 (72.2%) - - - -

=8 9 (22.5%) 3 (16.7%) 8 (20%) 4 (22.2%) - - - -

Clinical stage, n (%)

| 3 (7.5%) 3 (16.7%) 4 (10%) 2 (11.1%) - - - -

I - 2 (11.1%) 2 (4%) - - - - -

A 7 (17.5%) 4 (22.2%) 9 (22.5%) 2 (11.1%) - - - -

1B 15 (37.5%) 2 (11.1%) 11 (27.5%) 6 (33.3%) - - - -

1] 13 (32.5%) 5 (27.8%) 10 (25%) 8 (44.4%) - - - -

v 2 (5%) 2 (11.1%) 4 (10%) - - - - -
Alcoholism, n (%) 7 (17.5%) 4 (22.2%) 9 (22.5%) 2 (11.1%) 3 (7.1%) - 2 (5%) 1 (5.6%)
Smoking, n (%) 2 (5%) - 2 (5%) - 5 (11.9%) 2 (11.1%) 6 (15%) 1 (5.6%)
Obesity, n (%) 6 (15%) 4 (22.2%) 7 (17.5%) 3 (16.7%) 7 (16.7%) 3 (16.7%) 7 (17.5%) 2 (11.1%)
Cardiac condition, 5 (12.5%) 6 (33.3%) 7 (17.5%) 4 (22.2%) - 1 (5.6%) - 1 (5.6%)
n (%)

AH, n (%) 21 (52.5%) 8 (44.4%) 19 (47.5%) 10 (55.6%) 14 (33.3%) 9 (50%) 20 (50%) 3 (16.7%)
Dyslipidemia, n (%) 16 (40%) 8 (44.4%) 14 (35%) 10 (55.6%) 16 (38.1%) 9 (50%) 16 (40%) 8 (44.4%)
Diabetes, n (%) 9 (22.5%) 3 (16.7%) 8 (20%) 4 (22.2%) 6 (14.3%) 1 (5.6%) 5 (12.5%) 1 (5.6%)
HTG, n (%) 2 (5%) - 1 (2.5%) 1 (5.6%) 1 (2.4%) - - 1 (5.6%)
HC, n (%) 3 (7.5%) - 1 (2.5%) 2 (11.1%) 4 (9.5%) 1 (5.6%) 3 (7.5%) 2 (11.1%)
BPH, n (%) - - - - 3 (31%) 4 (22.2%) 11 (27.5%) 4 (22.2%)
Prostatitis, n (%) - - - - 1 (2.4%) 1 (5.6%) 2 (5%) -

AH arterial hypertension, BPH benign prostatic hyperplasia, HC hypercholesteremia, HTG hypertriglyceridemia

300°C (rate 5°C/min) and held for 1 min. The temperatures of
transfer line, manifold and trap were 280°C, 50°C and 180°C,
respectively. The emission current was 50 yA and the electron
multiplier was set in relative mode to an auto tune procedure. All
mass spectra were acquired in the electron impact mode (270 °C).
The analysis was performed in full scan mode and the mass range
used was 40-350 m/z, with a scan rate of 6 scan/s."”

To analyse VCCs, a 436-GC model (Bruker Daltonics) coupled to
an EVOQ triple quadrupole mass spectrometer (Bruker Daltonics)
and a Bruker MS workstation software version 8.2 were used. The
chromatographic separation was accomplished using a fused silica
capillary column (Rxi-5Sil MS; 30 m X 0.25 mm X 0.25 um; Restek
Corporation, U.S.,, Bellefonte, Pennsylvania) and high purity helium
C-60 (Gasin, Portugal) as carrier gas (flow rate 1 mL/min). The oven
temperature was held at 40 °C for 1 min, increasing to 250 °C (rate
5°C/min), held for 5 min, finally increasing to 300 °C (rate 20 °C/
min). The temperature of transfer line and manifold were 260 °C
and 40 °C, respectively. The emission current was 50 pA and the
electron multiplier was set in relative mode to an auto tune
procedure. All mass spectra were acquired in the electron impact
mode (270 °C). Data acquisition was performed in full scan mode
and a 50-600 m/z mass range was used.'®

The metabolite identification was accomplished by comparison
of the MS spectra with standards (whenever available), the
National Institute of Standards and Technology (NIST 14) database
spectral library, and comparison of the experimental and theory
(literature) Kovats index.

Data pre-processing

Before statistical analysis, the data was pre-processed using
MZmine 2,'® including baseline correction, peak detection,
chromatogram deconvolution and alignment. The parameters
used for pre-processing of VOCs data were: RT range 2.0-29.0 min,
m/z range 50-400, MS data noise level 1.0 x 10°, m/z tolerance 0.2,
chromatogram baseline level 1.0 x 10> and peak duration range
0.06-0.70 min; whereas for VCCs were: RT range 6.5-38.0 min, m/z
range 50-600, MS data noise level 5.0 x 10>, m/z tolerance 0.2,
chromatogram baseline level 1.0 x 10* and peak duration range
0.06-0.70 min. In both approaches, all RT-m/z pairs with a relative
standard deviation greater than 30% in QCs, as well as RT-m/z
pairs identified as contaminants (from column, fiber, among
others), were manually removed from the matrix. The obtained
data were normalised by the total area of the chromatograms and
the final matrix was scaled to pareto. Furthermore, to reduce the
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variation from uncontrolled confounding factors and simplify the
data, a variable selection method based in a univariate test,'”
namely t-test, was performed using MetaboAnalyst.*® Conse-
quently, all variables with p-value > 0.05 were removed from the
matrix.

Statistical analysis

The statistical analysis strategy used for VOCs and VCCs data was
similar and included multivariate and univariate statistical tests.
From all available samples, 70% were used for the training set and
30% were randomly selected for the external set. MVA was
performed using the training set and included principal compo-
nent analysis (PCA) and partial least squares discriminant analysis
(PLS-DA) in SIMCA-P 15 (Umetrics, Sweden). The robustness of the
PLS-DA models was confirmed through 7-fold cross validation and
permutation test (200 random permutations of Y-observations, 2
components) (SIMCA-P 15, Umetrics, Sweden). To test the validity
of the created models, an internal (training set) and external
(external set) validation was performed. For internal and external
validations, receiver operating characteristic curves (ROC), area
under the curve (AUQ), sensitivity, and specificity were computed
(MetaboAnalyst)?® for both PLS-DA models (VOCs and VCCs). The
samples of the external set were classified as cancer or controls,
taking into consideration the PLS-DA models obtained using the
training sets and the sensitivity, specificity and accuracy of both
PLS-DA models (VOCs and VCCs) were computed.?’

After MVA, all metabolites with VIP (Variable Importance to the
Projection) greater than one were subjected to univariate analysis
(GraphPad Prism 6, USA), including a normality test (Shapiro-Wilk
test) followed by unpaired Student’s t-test with Welch correction
test, for normal distribution, or unpaired Mann-Whitney U-test, for
non-normal distribution. Percentage of variation, uncertainty of
the percentage of variation, and effect size and the standard error
were also determined.?? For all significantly altered metabolites (p-
value < 0.05 and effect size higher than the standard error),
receiver operating characteristic curves (ROC), area under the
curve (AUQ), sensitivity, and specificity were also computed
(MetaboAnalyst).?° Bonferroni correction was used to adjust p-
values in multiple comparisons.”® Multivariate ROC exploratory
analysis (Metaboanalyst)20 was used to define a small panel of
discriminant metabolites with high accuracy for prostate cancer
detection, envisaging a possible translation into clinics using an
“e-nose”. The PLS-DA algorithm was used to evaluate the
importance of each discriminant metabolite based on VIP scores
through repeated random sub-sampling cross validation. The top
important metabolites were used to build a PLS-DA model which
was validated through ROC analysis using the training and
external sets.

To better understand the biological relevance of the signifi-
cantly altered VOCs and VCCs, a metabolic pathway analysis using
the MetPa tool was performed in Metaboanalyst.?® Finally, to
search for possible correlations between the metabolites sig-
nificantly altered in PCa, Spearman’s rank correlation coefficient
was computed for the set of identified and putatively annotated
statistically significant compounds and represented in a heatmap,
using R software (version 3.5.1).>* Spearman’s rank correlation
coefficient was also computed between age and the set of
metabolites found altered in PCa compared to controls.

RESULTS

Urinary volatile profile of PCa patients vs. controls

In this study, a HS-SPME/GC-MS method was employed to
evaluate differences in the urinary volatile profile of PCa patients
compared with controls. To accomplish a more comprehensive
evaluation of the urinary volatilome, we used two different sample
preparation techniques which enabled the identification of 122
VOCs and 148 VCCs (seven common compounds were found).

MVA was used to evaluate the reproducibility of both analytical
strategies and the discriminant capability of the PLS-DA models
created using the training set. The QC samples were closely
clustered in the PCA scores scatter plot (Fig. S1), which confirmed
the analytical reproducibility of both methods. For construction of
the PLS-DA models, a variable selection method was performed
(VOCs: 3232 variables x 82 samples; VCCs: 246 variables x
80 samples) to improve the prediction power. In Fig. 1, the
discriminant capability of the PLS-DA models, after variable
selection, is clearly observed (VOCs model: LV =2; R?X =0.172;
R’Y = 0.776; Q° = 0.599; VCCs model: LV = 2; R°X = 0.354; R’Y =
0.534; Q? = 0.443). Model robustness was also confirmed through
permutation testing (Fig. S2). In the internal validation, VOCs PLS-
DA model showed an AUC of 0.975, a sensitivity of 92% and
specificity of 100% and the VCCs model unveiled an AUC of 0.878,
a sensitivity of 71% and specificity of 91% (Fig. 1).

Furthermore, an external validation set was used to confirm the
validity of the training models. For VOCs and VCCs, among 18 PCa
samples, 14 were accurately classified and four were poorly
classified. On the other hand, 17 control samples were accurately
classified and only one was poorly classified for VOCs, whereas all
18 control samples were correctly classified for VCCs (Table S3).
Thus, taking into consideration these results, a sensitivity of 78%, a
specificity of 94% and an accuracy of 86% was obtained for VOCs,
whereas VCCs disclosed equal sensitivity, a specificity of 100% and
an accuracy of 89%. For VOCs, from a total of 64 metabolites with
VIP > 1, 31 were found significantly different between the two
groups (PCa vs. control). The discriminant VOCs included three
aldehydes, six ketones, two alcohols, two monoterpene alcohols,
one alkene, one cycloalkane, two terpenes, among others, and 11
unidentified compounds (Table 2). Regarding VCCs analysis, 21
metabolites showed VIP > 1 and 12 significantly differed between
PCa and control groups. The discriminant VCCs included two
alpha-ketoaldehydes, one alkanal, one alkenal, two aromatic
aldehydes, three ketones, one alkane and two unidentified
compounds (Table 3). The chromatographic characteristics con-
sidered for identification of VOCs and VCCs are displayed in
Tables S1 and S2, respectively. AUC values were superior to 0.6 for
all statistically significantly altered metabolites (Tables 2 and 3).
The sensitivity and specificity of the individual metabolites was
also determined and, despite the lower individual sensitivity and
specificity found for the majority of the metabolites when
compared to the one obtained for the models (Fig. 1 and
Table S3), all metabolites disclosed sensitivity and specificity
greater than 50 and 70%, respectively (Tables 2 and 3).

Age (Table 1) significantly differed between PCa and controls in
VOCs (Mann-Whitney test p-value=0.0002) and VCCs
(Mann-Whitney test p-value =0.0022) training sets. Hence, a
possible influence of age in the set of metabolites found altered in
PCa compared to controls (Tables 2 and 3) was investigated
through Spearman correlation, unveiling no statistically relevant
correlations (|r <0.36) (Table S4). In addition, the number of
individuals with arterial hypertension (AH) was higher in PCa
group compared to controls in the VOCs training set (Table 1). The
impact of AH on urine volatile profile was evaluated in the control
group (AH n=14 vs. non-HA n=28), revealing no predictive
power (Q°= —0.145) in the PLS-DA model (Fig. S3). Taking into
consideration these results, no age- and AH-related changes were
found in the urinary volatile signature of PCa patients.

Definition of a multi-biomarker panel for PCa diagnosis

The smallest panel of metabolites that best predict PCa comprised
6 metabolites, namely hexanal, 2,5-dimethylbenzaldehyde, 4-
methylhexan-3-one, dihydroedulan IA, methylglyoxal and 3-
phenylpropionaldehyde. This panel showed an AUC of 0.856, a
sensitivity of 72%, a specificity of 96% and an accuracy of 79%
taking into consideration the internal validation (Fig. 2). Regarding
the external validation set, the 6-biomarker panel showed an AUC
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a PLS-DA scores scatter plot (Pareto scaling; 2 components) obtained for VOCs training model of PCa patients (n = 40, squares) vs.

cancer-free controls (n = 42, circles), after variable selection; b Assessment of the diagnostic performance of the PLS-DA model obtained for
VOCs using the training set (AUC =0.975; sensitivity =92%; specificity =100%) and the external set (AUC =0.898; sensitivity = 78%;
specificity = 94%) through ROC analysis; ¢ PLS-DA scores scatter plot (Pareto scaling; 2 components) obtained for VCCs training model of PCa
patients (n = 40, squares) vs. cancer-free controls (n = 40, circles), after variable selection; d Assessment of the diagnostic performance of the
PLS-DA model obtained for VCCs using the training set (AUC = 0.878; sensitivity = 71%; specificity = 97%) and the external set (AUC = 0.944;

sensitivity = 78%; specificity = 100%) through ROC analysis

of 0.904, a sensitivity of 89%, a specificity of 83% and an accuracy
of 86% (Fig. 2 and Table S5).

Although integration of volatile compounds in specific bio-
chemical pathways is still difficult to accomplish, MetPA tool*® was
used for identification of the most relevant metabolic pathways
where the discriminant compounds are involved. The results
revealed that methylglyoxal is involved in pyruvate metabolism
and glycine, serine and threonine metabolism, phenylacetalde-
hyde in phenylalanine metabolism and hexanal in steroid
hormone biosynthesis (Fig. S4).

To overcome the lack of knowledge about the role of volatile
compounds in the metabolic pathways, Spearman’s correlation
indexes were computed using all identified metabolites (L1 and L2
in Tables 2, 3, S1 and S2) significantly altered in urine of PCa
patients (Fig. 3). The magnitude and the sign of correlations can
provide identification of metabolites in the same metabolic
pathway or under some common regulatory mechanisms.
Stronger positive correlations (r>0.7 and p<0.0001) were
observed for 2,6,6,10-tetramethyl-1-oxaspiro[4.5]dec-9-ene with
5-methyl-2-(propan-2-yl)cyclohexyl acetate (r=0.75), hexadecane
with cyclohexanone (r=0.72), 3-phenylpropionaldehyde with
cyclohexanone (r=0.77), 3-phenylpropionaldehyde with hexade-
cane (r=0.71) and 3-phenylpropionaldehyde with phenylacetal-
dehyde (r=0.76).

DISCUSSION

In this study, two HS-SPME/GC-MS approaches were used to more
comprehensively uncover the volatile profile of urine from PCa
patients compared with previous reports,®'® unveiling a total of
263 different volatile compounds. Multivariate analysis showed
that both VOCs and VCCs urinary signature allowed for accurate
discrimination between PCa and control groups. A major strength
of this study lies in its design, with the inclusion of an external
validation set to validate the models obtained through MVA of the
training sets, after variable selection. These external validation sets
disclosed satisfactory sensitivity (78% for VOCs and VCCs), high
specificity (94% for VOCs and 100% for VCCs) and high accuracy
(86% for VOCs and 89% for VCCs). Interestingly, all false negatives
observed in VOCs model were from obese and/or alcoholic
subjects, whereas the false positive was a control with prostatitis
(Table 1). Among the four false negatives observed in VCCs model,
three were also obese subjects and one with ischaemic heart
disease, which may compromise renal function (Table 1). These
confounding factors might justify the misclassifications. Notwith-
standing, specificity and accuracy were superior to previously
published in similar studies.®® Furthermore, individually, all
discriminant metabolites disclosed sensitivity (ranging from 48
to 80%; Tables 2 and 3) higher than the one reported for serum
PSA (20.5%).*
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