3,712 research outputs found

    Multiscale approach to spin transport in magnetic multilayers

    Full text link
    This article discusses two dual approaches to spin transport in magnetic multilayers: a direct, purely quantum, approach based on a Tight-Biding model (TB) and a semiclassical approach (Continuous Random Matrix Theory, CRMT). The combination of both approaches provides a systematic way to perform multi-scales simulations of systems that contain relevant physics at scales larger (spin accumulation, spin diffusion...) and smaller (specular reflexions, tunneling...) than the elastic mean free paths of the layers. We show explicitly that CRMT and TB give consistent results in their common domain of applicability

    Entire maps with rational preperiodic points and multipliers

    Full text link
    Given a number field KC\mathbb{K} \subset \mathbb{C} that is not contained in R\mathbb{R}, we prove the existence of a dense set of entire maps f ⁣:CCf \colon \mathbb{C} \rightarrow \mathbb{C} whose preperiodic points and multipliers all lie in K\mathbb{K}. This contrasts with the case of rational maps. In addition, we show that there exists an escaping quadratic-like map that is not conjugate to an affine escaping quadratic-like map and whose multipliers all lie in Q\mathbb{Q}.Comment: 19 page

    Analyse mathématique et numérique des modèles Pn pour la simulation de problèmes de transport de photons

    Get PDF
    Computational costs for direct numerical simulations of photon transport problemsare very high in terms of CPU time and memory. One way to tackle this issue is todevelop reduced models that a cheaper to solve numerically. There exists number of these models : moments models, discrete ordinates models (SN), diffusion-like models... In this thesis, we focus on PN models in which the transport operator is approached by mean of a truncated development on the spherical harmonics basis. These models are arbitrary accurate in the angular dimension and are rotationnaly invariants (in multiple space dimensions). The latter point is fundamental when one wants to simulate inertial confinment fusion (ICF) experiments where the spherical symmetry plays an important part in the accuracy of the numerical solutions. We study the mathematical structure of the PN models and construct a new numerical method in the special case of a one dimensionnal space dimension with spherical symmetry photon transport problems. We first focus on a linear transport problem in the vacuum. Even in this simple case, it appears in the PN equations geometrical source terms that are stiff in the neighborhood of r = 0 and thus hard to discretise. Existing numerical methods are not satisfactory for multiple reasons : (1) unaccuracy in the neighborhood of r = 0 ("flux-dip"), (2) do not capture steady states (well-balanced scheme), (3) no stability proof. Following recent works, we develop a new well-balanced scheme for which we show the L² stability. We then extend the scheme for photon transport problems within a no moving media, the linear Boltzmann equation, and interest ourselves on its behavior in the diffusion limit (asymptotic-preserving property). In a second part, we consider radiation hydrodynamics problems. Since modelisation of these problems is still under discussion in the litterature, we compare a set of existing models by mean of mathematical analysis and establish a hierarchy. For each model, we focus on the following mathematical properties : (1) energy and impulsion conservation, (2) accuracy of the comobile effects, (3) existence of a mathematical entropy and (4) behavior in the diffusion limit. Our study reduces to « laboratory frame » models and we are still interested in the PN approximation of the transport operator. We identify defects in entropy structure of existing models and propose an entroy correction which leads to PN-based radiation hydrodynamics models which satisfy all the properties listed above.La résolution numérique directe des problèmes de transport de photons en interaction avec un milieu matériel est très coûteuse en mémoire et temps CPU. Pour pallier ce problème, une méthode consiste à construire des modèles réduits dont la résolution est moins coûteuse. La littérature abonde de ce genre de modèles : modèles probabilistes (Monte-Carlo), modèles aux moments (M₁, PN), modèles aux ordonnées discrètes (SN), modèles de diffusion... Dans cette thèse, nous nous intéressons aux modèles PN dans lesquels l'opérateur de transport est approché par projections sur une base tronquée d'harmoniques sphériques. Ces modèles ont l'avantage d'être arbitrairement précis sur la dimension angulaire et ne présentent pas les défauts connus des autres méthodes (bruit stochastique, "effets de raies") pouvant briser les éventuelles symétries du problème. Ce dernier point est capital pour la simulation d'expériences de fusion par confinement inertiel (FCI) où la symétrie sphérique joue un rôle important dans la précision des résultats. Nous étudions donc dans cette thèse la structure mathématique des modèles PN ainsi que leur discrétisation dans le cas d'une géométrie 1D sphérique.Nous commençons par le cas du transport linéaire dans le vide. Même dans ce cas simple, les équations du modèle PN contiennent des termes sources d'origine géométrique dont la discrétisation s'avère délicate. Jusqu'à présent, les différents schémas utilisés étaient insatisfaisants pour les raisons suivantes : (1) mauvais comportement au voisinage de r = 0 (phénomène de "flux-dip"), (2) non préservation des équilibres stationnaires, (3) pas de preuve formelle de stabilité. À la lumière de récents travaux, nous proposons une nouvelle discrétisation qui capture exactement les états d'équilibres. Nous démontrons en particulier la stabilité en norme L² du schéma. Nous étendons par la suite ce schéma au cas du transport de photons dans un milieu matériel figé et nous nous intéressons au comportement du schéma en limite diffusion (propriété "asymptotic-preserving").Dans un second temps, nous nous intéressons au couplage entre rayonnement et hydrodynamique. Devant l'absence de consensus sur les modèles "transport" d'hydrodynamique radiative issus de la littérature, nous établissons une étude comparative de ceux-ci basée sur leurs propriétés mathématiques. Nous nous intéressons particulièrement aux propriétés suivantes : (1) conservation de l'énergie et de l'impulsion, (2) précision des effets comobiles, (3) existence d'une entropie mathématiques compatible et (4) restitution de la limite diffusion. Notre étude se réduit aux modèles dits "mixed-frame" et une attention particulière est toujours portée sur l'approximation "PN" de l'opérateur de transport. Nous identifions des défauts (conservation ou entropie) sur des modèles existants et proposons une correction entropique conduisant à un modèle PN satisfaisant toutes les propriétés mathématiques listées ci-dessus

    Entire or rational maps with integer multipliers

    Full text link
    Let OK\mathcal{O}_{K} be the ring of integers of an imaginary quadratic field KK. Recently, Ji and Xie proved that every rational map f ⁣:C^C^f \colon \widehat{\mathbb{C}} \rightarrow \widehat{\mathbb{C}} of degree d2d \geq 2 whose multipliers all lie in OK\mathcal{O}_{K} is a power map, a Chebyshev map or a Latt\`{e}s map. Their proof relies on a result from non-Archimedean dynamics obtained by Rivera-Letelier. In the present note, we show that one can avoid using this result by considering a differential equation instead. Our proof of Ji and Xie's result also applies to the case of entire maps. Thus, we also show that every nonaffine entire map f ⁣:CCf \colon \mathbb{C} \rightarrow \mathbb{C} whose multipliers all lie in OK\mathcal{O}_{K} is a power map or a Chebyshev map.Comment: 8 pages; added the case of entire map

    Contabilidad de Costos: Contabilidad de Costos Agropecuarias de la Finca "El Paraíso" para el Periodo 2013

    Get PDF
    Este Seminario de Graduación su enfoque fundamental es evaluar los elementos de la contabilidad Agropecuaria, y los costos incurridos durante el proceso de producción del Maíz de la Finca El PARAISO durante el periodo contable 2013 por ser una herramienta útil eh importante para la toma de decisiones en una finca también cualquier otra Actividad Agropecuaria. Es un medio para controlar la producción cuantitativa hacia el logro de los objetivos propuestos y así alcanzarlos. Durante los últimos años esta especialidad ha tomado un modelo de crecimiento y formalismo a través de la bolsa Agropecuaria y su transparencia es vista en la banca Nacional está proponiendo y afirmando créditos Agropecuarios. La investigación se realizó de carácter científico y descriptivo con un diseño de recopilación de datos se obtuvieron del campo laboral ejemplificándolos con objeto de estudio. Este cultivo tiene sus dificultades durante el proceso productivo por diversos factores tales como: el clima, las plagas y otros factores externos que influyen en el rendimiento por manzana encareciendo el producto y aumento el Costo de producción. Entre otros problema identificados es la clasificación del costo versus el reconocimiento de un gasto pero los resultados a través del presente trabajo efectúan una clara clasificación de los mismos y también una especificación de los beneficios tributarios de comercializar a través de la Bolsa Agropecuaria de Nicaragua. Se puede determinar que la falta de pericia y criterio contable apegado a ciertas normas aplicadas erróneas puede ocasionar datos irrelevantes e irreales en la toma de decisiones gerenciales debido a las diversas contingencias. La contabilidad de costos agropecuaria es una herramienta efectiva para el debido control y apoyo a los productores en el alcance de sus metas. Se demostrara ciertos beneficios tributarios que se obtienen al transar en la Bolsa agropecuaria también la diferencia fuera de esta donde observara claramente cual opción es rentable

    Double Superhelix Model of High Density Lipoprotein

    Get PDF
    High density lipoprotein (HDL), the carrier of so-called “good” cholesterol, serves as the major athero-protective lipoprotein and has emerged as a key therapeutic target for cardiovascular disease. We applied small angle neutron scattering (SANS) with contrast variation and selective isotopic deuteration to the study of nascent HDL to obtain the low resolution structure in solution of the overall time-averaged conformation of apolipoprotein AI (apoA-I) versus the lipid (acyl chain) core of the particle. Remarkably, apoA-I is observed to possess an open helical shape that wraps around a central ellipsoidal lipid phase. Using the low resolution SANS shapes of the protein and lipid core as scaffolding, an all-atom computational model for the protein and lipid components of nascent HDL was developed by integrating complementary structural data from hydrogen/deuterium exchange mass spectrometry and previously published constraints from multiple biophysical techniques. Both SANS data and the new computational model, the double superhelix model, suggest an unexpected structural arrangement of protein and lipids of nascent HDL, an anti-parallel double superhelix wrapped around an ellipsoidal lipid phase. The protein and lipid organization in nascent HDL envisages a potential generalized mechanism for lipoprotein biogenesis and remodeling, biological processes critical to sterol and lipid transport, organismal energy metabolism, and innate immunity

    Solid Spherical Energy (SSE) CNNs for Efficient 3D Medical Image Analysis

    Get PDF
    Invariance to local rotation, to differentiate from the global rotation of images and objects, is required in various texture analysis problems. It has led to several breakthrough methods such as local binary patterns, maximum response and steerable filterbanks. In particular, textures in medical images often exhibit local structures at arbitrary orientations. Locally Rotation Invariant (LRI) Convolutional Neural Networks (CNN) were recently proposed using 3D steerable filters to combine LRI with Directional Sensitivity (DS). The steerability avoids the expensive cost of convolutions with rotated kernels and comes with a parametric representation that results in a drastic reduction of the number of trainable parameters. Yet, the potential bottleneck (memory and computation) of this approach lies in the necessity to recombine responses for a set of predefined discretized orientations. In this paper, we propose to calculate invariants from the responses to the set of spherical harmonics projected onto 3D kernels in the form of a lightweight Solid Spherical Energy (SSE) CNN. It offers a compromise between the high kernel specificity of the LRI-CNN and a low memory/operations requirement. The computational gain is evaluated on 3D synthetic and pulmonary nodule classification experiments. The performance of the proposed approach is compared with steerable LRI-CNNs and standard 3D CNNs, showing competitive results with the state of the art
    corecore