94 research outputs found

    Influence of the redox state on the neptunium sorption under alkaline conditions: Batch sorption studies on titanium dioxide and calcium silicate hydrates

    Get PDF
    Wet chemistry experiments were carried out to investigate the effect of the redox state and aqueous speciation on the uptake of neptunium by titanium dioxide (TiO2) and by calcium silicate hydrates (C-S-H) under alkaline conditions. TiO2 was chosen as a reference sorbent to determine the surface complexation behaviour of neptunium under alkaline conditions. C-S-H phases are important constituents of cement and concrete. They may contribute significantly to radionuclide retention due to their high recrystallization rates making incorporation the dominating sorption mechanism for many radionuclides (e.g. the actinides) on these materials. The sorption of neptunium on both solids was found to depend strongly on the degree of hydrolysis. On TiO2 Rd values for Np(IV), Np(V) and Np(VI) are identical at pH = 10 and decrease with progressing hydrolysis in case of Np(V) and Np(VI). On C-S-H phases, Rd values for the three redox states are also identical at pH = 10. While the Rd values for Np(VI) sorption on C-S-H phases decrease with progressing hydrolysis, the Rd values for Np(IV) and Np(V) sorption are not affected by the pH. In addition to the effect of hydrolysis, the presence of Ca is found to promote Np(V) and Np(VI) sorption on TiO2 whereas on C-S-H phases, the present wet chemistry data do not give unambiguous evidence. Thus, the aqueous speciation appears to have a similar influence on the sorption of the actinides on both types of solids despite the different sorption mechanism. The similar Rd values for Np(IV,V,VI) sorption at pH = 10 can be explained qualitatively by invoking inter-ligand electrostatic repulsion between OH groups in the coordination sphere of Np(V) and Np(VI). This mechanism was proposed earlier in the literature for the prediction of actinide complexation constants with inorganic ligands. A limiting coordination number for each Np redox state, resulting from the inter-ligand electrostatic repulsion, allows the weaker sorption of the highest hydrolysed Np(V,VI) species to be explaine

    Radionuclide geochemistry: solubility and thermodynamics in a HLW repository

    Get PDF
    Deep geological disposal is the internationally favoured option to isolate high-level nuclear waste (HLW) from the biosphere and to minimise the potential radiological risk for future generations. Potentially contacting aqueous solutions such as groundwater may, however, lead to the corrosion of the solid casks containing the nuclear waste, and the formation of aqueous radionuclide systems in the near-field of the emplacement rooms. As dissolved species, radionuclides can in principle further migrate into the far-field and finally reach the biosphere on medium and long timescales. Like all chemical species, the radionuclides are subject to fundamental (geo)chemical laws. Relevant reactions that control retention and release, and hence, the migration behaviour and fate of radionuclides in a repository, are solubility equilibria, formation of soluble complexes, redox reactions, sorption on and incorporation into mineral surfaces, transport phenomena etc. These processes depend directly on the (geo)chemical boundary conditions, and, consequently, can differ greatly for various host rock systems such as clay rock, rock salt, and crystalline rock. Many of the radionuclides in HLW are heavy metals that are sparingly soluble under various repository-relevant conditions, e.g. actinides, lanthanides, transition metals, so that only partial dissolution (mobilisation) from the solid waste matrices is expected. This underlines the importance of evaluating the radionuclide solubility within a geochemically based safety assessment for repositories as it provides reliable upper-limit concentrations of the mobile, potentially migrating radionuclide fraction in the near-field. In this contribution, we discuss relevant aspects related to the topic radionuclide solubility and thermodynamics in a HLW repository. This includes a summary of recent laboratory studies on the solubility behaviour and speciation of key radionuclides in repository-relevant solutions, which are an important basis for obtaining (geo)chemical information and models, and the corresponding fundamental thermodynamic constants on aqueous radionuclide systems. National and international thermodynamic database projects, where quality-assured thermodynamic data (solubility products, complex formation constants, and ion-interaction parameters) are evaluated and compiled, e.g. the Nuclear Energy Agency Thermochemical Database (http://www.oecd-nea.org, last access: 1 November 2021) or the Thermodynamic Reference Database (http://www.thereda.de, last access: 1 November 2021), are highlighted and the main remaining uncertainties discussed. The experimental information and the quantitative thermodynamic data are applied within a generic case study to demonstrate the impact of different geochemical solution conditions representing different host rock systems considered as HLW repositories in Germany on the solubility and speciation of selected radionuclides

    Intercomparison of Redox determination methods on designed and near-natural aqueous systems : FP 7 EURATOM Collaborative Project "Redox Phenomena Controlling Systems" (KIT Scientific Reports ; 7572)

    Get PDF
    The outcome of the RECOSY Intercomparison Exercise (ICE), 16-20 November 2009, KIT-INE, Karlsruhe, conducted within the EURATOM FP7 framework is presented. The comparison of different redox determination methods allow to identify critical issues and provide the basis for more confidence in redox determinations relevant for nuclear waste disposal. Recommendations on redox measurements are given in the report and future activities proposed to further improve the reliability of redox measurements

    Què passa amb el mercuri quan arriba al terra?

    Get PDF
    Un dels elements químics més perjudicials per al medi ambient i els humans, és el mercuri, per la qual cosa resulta important analitzar en quina quantitat es troba i com es comporta una vegada arriba al terra procedent de les emissions industrials. Investigadors de la UAB han estudiat els terrenys més pròxims a una planta química de clor-àlcali ubicada a Holanda.Uno de los elementos químicos más perjudiciales para el medioambiente y los humanos es el mercurio, por lo que resulta importanteanalizar en qué cantidad se halla y cómo se comporta una vez llega alsuelo procedente de las emisiones industriales. Investigadores de laUAB han estudiado los terrenos más cercanos a una planta química decloro-álcali ubicada en Holanda
    • …
    corecore