


stability of these species is strongly dependent on the pH and

the carbonate concentration.

The vast majority of neptunium is formed as a by-pro-

duct of the neutron irradiation of uranium in nuclear

reactors. Its most stable isotope is 237Np (T1/2

= 2.14 9 106 years). The neptunium behavior in aquifer

systems and its interaction with natural materials are sub-

jects of great interest because of their environmental rele-

vance in context with the nuclear waste disposal.

Under sub-oxic and oxidizing redox conditions, neptu-

nium is expected to be present in its ?V oxidation state.

Due to the low effective charge of the neptunyl cation

(NpO2
?, Zeff *2.3 [8]), Np(V) shows weak hydrolysis,

high solubility and weak sorption. These properties facili-

tate its mobility in the environment, which can be further

enhanced in the presence of carbonate ions [9 12]. The

carbonate complexation of NpO2
? leads to the formation of

the binary anionic species NpO2CO3
-, NpO2(CO3)2

3- and

NpO2(CO3)3
5-. The formation of several ternary Np(V)

OH CO3 species under hyperalkaline pH conditions has

also been described in the literature, although only ther-

modynamic data for the complexes NpO2(CO3)2OH4- and

(NpO2)2CO3(OH)3
- were selected in the Nuclear Energy

Agency Thermochemical Database (NEA TDB) [9, 13].

performed within the frame of the investigations of Yucca

Mountain (Nevada, USA) as potential geologic nuclear

waste repository [36 40] and the environmental conditions

at the Nevada Test Site [41]. The effect of water alkalinity

and the presence of carbonates in the solutions on the

Np(V) sorption were also investigated [37, 42]. In the case

of solutions undersaturated with respect to atmospheric

CO2, the sorption continuously increased with increasing

pH. Under equilibrium with atmospheric CO2, the

Np(V) sorption is significant in the pH range (7 9.5), while

inhibited at higher pH values where negatively charged

neptunyl-carbonate complexes are the predominant species

[37]. A publication concerning the interaction of Mexican

natural erionite with 239Np was also found in the literature

[43].

To our knowledge, regardless of the appearance of a

number of publications on the sorption of Th(IV)- and

Np(V) cations by zeolitic materials, the removal of anionic

carbonate- and mixed hydroxy-carbonate complexes of

Th(IV) and Np(V) by surfactant-modified natural zeolites

has not yet been extensively studied. The only publication

found in the case of neptunium deals with the Np(V) sorp-

tion by hexadecyl-trimethyl-ammonium (HDTMA)-modi-

fied clinoptilolite-bearing zeolitic material as a function of

pH in the presence of NaCl and atmospheric CO2 [44]. The

authors of this publication observed, at pH [6, little

enhancement of the Np(V) sorption onto the specific sur-

factant-modified natural zeolite. They also reported that the

presence of chloride anions in the solution reduced the

effectivity of the sorbent.

The objective of the present work was to investigate the

ability of hexadecyl-trimethyl-ammonium (HDTMA)-

modified zeolitic materials to remove thorium and neptu-

nium from alkaline carbonate-rich aqueous solutions.

Experimental

The zeolitic materials

The HEU-type zeolitic material used for the sorption

experiments was from Petrota (Thrace, Greece) and sup-

plied by GEO-VET N. Alexandridis & Co. Its miner-

alogical composition was 86% (Ca, K) HEU-type zeolite,

4% micas ? clays, 5% feldspars and 5% SiO2-phases. Its

total cation exchange capacity (CEC) was 1.87 mmol/g

[45], whereas its external cation exchange capacity,

determined using HDTMA-Br solutions, was found to be

0.185 mmol/g.

The modified form of the tuff was prepared by treating

5 g of the material with 25 mL of 60 mM hexadecyl-

trimethylammonium bromide (HDTMA-Br) aqueous

solution at 60 �C for 24 h [46].

Several methods have been proposed for the removal of 
Th(IV) and Np(V) from waters and wastewaters including 
solvent extraction, ion-exchange and adsorption by, among 
others, natural and synthetic zeolites, clays, biosorbents 
and carbons [14].

The zeolitic tuffs are important natural sorbents frequently 
used as decontamination agents for soils and water basins, 
backfill and sealing materials in repositories and as permeable 
reactive barriers for cleaning of ground-waters [15]. The 
zeolites, because of their negatively charged surface, exhibit 
high efficiency in sorbing cationic species. The modification 
of their surface mainly using quaternary amines (e.g., 
HDTMA, ODTMA, N-cetylpyridinium) can provide them 
with the additional ability to sorb anions, non-polar organic 
species and pathogens from aqueous media. Their original 
cation sorption capacity is also partly retained [16].

The work performed on the thorium(IV) removal by 
natural zeolites is not especially extensive. Most of the 
work concerns the thorium uptake by HEU-type zeolites 
[4, 17 29]. This type of zeolites is the most abundant on 
Earth. Crystals of HEU-type zeolites constitute, along with 
clays, the geological formations of locations considered in 
the past for potential nuclear waste repositories (e.g., 
Yucca Mountain, Nevada, USA [30]). The works con-

cerning other natural zeolite types (mordenite [18, 23], 
phillipsite [31], chabazite [31, 32], green tuff [33], erionite 
[34], analcime [35]) are limited.

Studies concerning the interaction of neptunium aque-

ous solutions with natural zeolitic materials were mostly



For comparison purposes, in the case of thorium sorp-

tion, experiments using raw and HDTMA-modified cha-

bazite- and phillipsite bearing tuffs were also performed

under the same conditions.

The chabazitic tuff (Vesuvio area, Italy) was supplied by

G. Apostolico & C. Tanagro [47]. According to recent

unpublished XRD investigation the utilized sample had

zeolite content of 52% (27% chabazite and 25% phillip-

site), 1% clay-minerals and 4% micas. The ammo-

nium uptake ability of the material was found to be

214 meq/100 g determined by the ammonium acetate sat-

uration method [48].

The phillipsite bearing tuff (Marano region, Naples,

Italy) was supplied by Italiana Zeoliti S.R.L under the

commercial name PHIL-75. The XRD examination of the

later material, which indicated, except phillipsite (46%),

the presence of small amounts of chabazite (ca. 5%) and

clay minerals, in general agrees with the mineralogical

composition of the tuffs from the Marano region [49, 50].

The particle size of all materials used for the experi-

mental work was\1.0 mm.

In the case neptunium sorption experiments pulverized

pure heulandite crystals from Poona (India) were also used

as sorbent [51].

The presence of the quaternary amino-groups on the

surface of the modified zeolitic materials was verified by

the appearance of the 402.3 eV binding energy of the N1s

electron in the X-ray photoelectron spectra measured at

KIT-INE using a PHI 5600 spectrometer.

The pH measurements

The hydrogen ion concentration (pHc = -log[H?]) was

measured using combination pH electrodes (type ROSS,

Orion) calibrated against standard pH buffers (pH = 1 12,

Merck). The values of pHc = pHexp ? Ac were calculated

from the operational ‘‘measured’’ pHexp using empirical

correlation factors (Ac), which include both the liquid

junction potential and the activity coefficient of H?.

Because of the lack of data determined for carbonate

solutions, for the calculation of the Ac values reported in

the literature for NaCl solutions were utilized [52].

Thorium sorption experiments

The experiments were performed in polypropylene cen-

trifuge tubes (Nalgene) using 9.7 9 10-5 M 232Th(IV) in

carbonate solutions of pHc 9.0 10.8 (Na2CO3/NaHCO3

buffering; total carbonate concentration 0.25 M). The solid

to liquid ratio was 10 g/L and the contact time 48 h. At the

end of the contact time the 232Th was determined, after

10 kD ultrafiltration using Nanosep� centrifugal vials (Pall

Corporation), in the liquid phase, [Th]aq, by ICP-MS

(Perkin-Elmer, Elan 6100). The concentration of 232Th in

the sorbent [Th]s was calculated on the basis of the data

obtained for the liquid phase.

Neptunium sorption experiments

Neptunium sorption experiments were performed under

argon atmosphere (glove box). For the batch experiments,

35 lL of a well-defined, oxidation state pure 3.7 9 10-3 M
237Np(V) stock solution were spiked to 5 mL of the HEU-

type zeolite suspensions (initial concentration of

[Np(V)]� = 2.6 9 10-5 M in the samples). In order to

cover the region of pH 6 11 two series of experiments

were performed, one using Na2CO3/NaHCO3 buffer solu-

tions (total carbonate concentration 0.25 M) and the other

one using MES (2-(N-morpholino)ethanesulfonic acid),

PIPES (piperazine-N,N0-bis(2-ethanesulfonic acid), HEPES

[(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid] and

TRIS (tris(hydroxymethyl)aminomethane) buffers (car-

bonate concentration 3 9 10-4 M). The concentration of

the buffers in the samples was around 10 mM. The 237Np

in the solutions, [Np]aq was determined, after 10 kD

ultrafiltration using Nanosep� centrifugal vials (Pall Cor-

poration), by liquid scintillation counting of its alpha

activity. The 237Np alpha activity was performed after

automatic a/b discrimination of the b-counts of the 233Pa

daughter nuclide using a Wallac/Perkin-Elmer QUANTU-

LUS equipment and Ultima Gold XR scintillation cocktail

(Perkin-Elmer). The 237Np concentration in the sorbent,

[Np]s was then calculated using these data.

Speciation calculations

Speciation thorium and neptunium calculations were per-

formed using the code MEDUSA [53] and the data

obtained from OECD-NEA Thermochemical Database for

T = 25 �C [9, 54]. The ionic strength corrections were

made using the extended Debye-Hückel approach.

Results and discussion

Thorium(IV) sorption experiments

The Th-sorption coefficients (Rd = [Th]s/[Th]aq) for the

zeolitic materials are given in Fig. 1. A very high sorption

was observed for the modified tuffs at pHc = 9 where the

predominance of highly charged anions of the type

Th(CO3)5
6- and Th(CO3)4(OH)5- (Fig. 2) can promote the

strong uptake by the HDTMA-modified material. The

decrease of Rd with increasing pHc values can be explained

by the increase of [CO3
2-] in solution and the conse-

quentially increased competition for the sorption sites of





in solution with respect to the upper solubility limit expected

for Np(V) under these conditions (oxidizing, high carbonate

concentration) and thus confirm the potential of this material

for specific environmental applications.

Conclusions

All investigated HDTMA-modified zeolitic materials

showed considerable Th- and Np-sorption ability from

rather concentrated (0.25 M) carbonate solutions.

The affinity of the materials towards thorium sorption

was higher than the corresponding one for neptunium under

comparable experimental conditions. The relatively high

thorium uptake observed for 9\ pHc\ 10.5 is likely due

to the sorption of highly charged anions (Th(CO3)5
6- and

ThOH(CO3)4
5-), predominant under the experimental con-

ditions in solution by the HDTMA-modified tuffs. The

decrease of the Rd values up to pHc = 10.5 can be

explained by the increasing [CO3
2-] in solution with

increasing pHc and the consequentially enhanced compe-

tition of carbonate for the sorption sites of anions on the

modified tuffs.

The Rd values for the Np(V)-sorption, although not

especially high, represent a significant decrease of neptu-

nium(V) concentration in carbonate containing solutions and

confirm the potential of the HDTMA-modified HEU-type

zeolitic material for specific environmental applications.
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