Radionuclide geochemistry: solubility and thermodynamics in a HLW repository

Abstract

Deep geological disposal is the internationally favoured option to isolate high-level nuclear waste (HLW) from the biosphere and to minimise the potential radiological risk for future generations. Potentially contacting aqueous solutions such as groundwater may, however, lead to the corrosion of the solid casks containing the nuclear waste, and the formation of aqueous radionuclide systems in the near-field of the emplacement rooms. As dissolved species, radionuclides can in principle further migrate into the far-field and finally reach the biosphere on medium and long timescales. Like all chemical species, the radionuclides are subject to fundamental (geo)chemical laws. Relevant reactions that control retention and release, and hence, the migration behaviour and fate of radionuclides in a repository, are solubility equilibria, formation of soluble complexes, redox reactions, sorption on and incorporation into mineral surfaces, transport phenomena etc. These processes depend directly on the (geo)chemical boundary conditions, and, consequently, can differ greatly for various host rock systems such as clay rock, rock salt, and crystalline rock. Many of the radionuclides in HLW are heavy metals that are sparingly soluble under various repository-relevant conditions, e.g. actinides, lanthanides, transition metals, so that only partial dissolution (mobilisation) from the solid waste matrices is expected. This underlines the importance of evaluating the radionuclide solubility within a geochemically based safety assessment for repositories as it provides reliable upper-limit concentrations of the mobile, potentially migrating radionuclide fraction in the near-field. In this contribution, we discuss relevant aspects related to the topic radionuclide solubility and thermodynamics in a HLW repository. This includes a summary of recent laboratory studies on the solubility behaviour and speciation of key radionuclides in repository-relevant solutions, which are an important basis for obtaining (geo)chemical information and models, and the corresponding fundamental thermodynamic constants on aqueous radionuclide systems. National and international thermodynamic database projects, where quality-assured thermodynamic data (solubility products, complex formation constants, and ion-interaction parameters) are evaluated and compiled, e.g. the Nuclear Energy Agency Thermochemical Database (http://www.oecd-nea.org, last access: 1 November 2021) or the Thermodynamic Reference Database (http://www.thereda.de, last access: 1 November 2021), are highlighted and the main remaining uncertainties discussed. The experimental information and the quantitative thermodynamic data are applied within a generic case study to demonstrate the impact of different geochemical solution conditions representing different host rock systems considered as HLW repositories in Germany on the solubility and speciation of selected radionuclides

    Similar works