187 research outputs found

    Clinical outcome of skin yaws lesions after treatment with benzathinebenzylpenicillin in a pygmy population in Lobaye, Central African Republic

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Yaws is a bacterial skin and bone infectious disease caused by <it>Treponema pallidum pertenue</it>. It is endemic, particularly among pygmies in Central African Republic. To assess the clinical cure rate after treatment with benzathinepenicillin in this population, we conducted a cohort survey of 243 patients in the Lobaye region.</p> <p>Findings and conclusion</p> <p>The rate of healing of lesions after 5 months was 95.9%. This relatively satisfactory level of therapeutic response implies that yaws could be controlled in the Central African Republic. Thus, reinforcement of the management of new cases and of contacts is suggested.</p

    Genome-wide enhancer maps link risk variants to disease genes

    Get PDF
    Genome-wide association studies (GWAS) have identified thousands of noncoding loci that are associated with human diseases and complextraits, each of which could reveal insights into the mechanisms of disease(1). Many ofthe underlying causal variants may affect enhancers(2,3), but we lack accurate maps of enhancers and their target genes to interpret such variants. We recently developed the activity-by-contact (ABC) model to predict which enhancers regulate which genes and validated the model using CRISPR perturbations in several cell types(4). Here we apply this ABC model to create enhancer-gene maps in 131 human cell types and tissues, and use these maps to interpret the functions of GWAS variants. Across 72 diseases and complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class of 577genesthat appear to influence multiple phenotypes through variants in enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal variants are enriched in predicted enhancers by more than 20-fold in particular cell types such as dendritic cells, and ABC achieves higher precision than other regulatory methods at connecting noncoding variants to target genes. These variant-to-function maps reveal an enhancer that contains an IBD risk variant and that regulates the expression of PPIF to alter the membrane potential of mitochondria in macrophages. Our study reveals principles of genome regulation, identifies genes that affect IBD and provides a resource and generalizable strategy to connect risk variants of common diseases to their molecular and cellular functions.Peer reviewe

    Efficacy and Safety of Prophylactic Vaccines against Cervical HPV Infection and Diseases among Women: A Systematic Review & Meta-Analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>We conducted a systematic review and meta-analysis to assess efficacy and safety of prophylactic HPV vaccines against cervical cancer precursor events in women.</p> <p>Methods</p> <p>Randomized-controlled trials of HPV vaccines were identified from MEDLINE, Cochrane Central Register of Controlled Trials, conference abstracts and references of identified studies, and assessed by two independent reviewers. Efficacy data were synthesized using fixed-effect models, and evaluated for heterogeneity using I<sup>2 </sup>statistic.</p> <p>Results</p> <p>Seven unique trials enrolling 44,142 females were included. The fixed-effect Relative Risk (RR) and 95% confidence intervals were 0.04 (0.01-0.11) and 0.10 (0.03-0.38) for HPV-16 and HPV 18-related CIN2+ in the per-protocol populations (PPP). The corresponding RR was 0.47 (0.36-0.61) and 0.16 (0.08-0.34) in the intention-to-treat populations (ITT). Efficacy against CIN1+ was similar in scale in favor of vaccine. Overall vaccines were highly efficacious against 6-month persistent infection with HPV 16 and 18, both in the PPP cohort (RR: 0.06 [0.04-0.09] and 0.05 [0.03-0.09], respectively), and the ITT cohorts (RR: 0.15 [0.10-0.23] and 0.24 [0.14-0.42], respectively). There was limited prophylactic effect against CIN2+ and 6-month persistent infections associated with non-vaccine oncogenic HPV types. The risk of serious adverse events (RR: 1.00, 0.91-1.09) or vaccine-related serious adverse events (RR: 1.82; 0.79-4.20) did not differ significantly between vaccine and control groups. Data on abnormal pregnancy outcomes were underreported.</p> <p>Conclusions</p> <p>Prophylactic HPV vaccines are safe, well tolerated, and highly efficacious in preventing persistent infections and cervical diseases associated with vaccine-HPV types among young females. However, long-term efficacy and safety needs to be addressed in future trials.</p

    Chromosomal Instability in Near-Diploid Colorectal Cancer: A Link between Numbers and Structure

    Get PDF
    Chromosomal instability (CIN) plays a crucial role in tumor development and occurs mainly as the consequence of either missegregation of normal chromosomes (MSG) or structural rearrangement (SR). However, little is known about the respective chromosomal targets of MSG and SR and the way these processes combined within tumors to generate CIN. To address these questions, we karyotyped a consecutive series of 96 near-diploid colorectal cancers (CRCs) and distinguished chromosomal changes generated by either MSG or SR in tumor cells. Eighty-three tumors (86%) presented with chromosomal abnormalities that contained both MSGs and SRs to varying degrees whereas all 13 others (14%) showed normal karyotype. Using a maximum likelihood statistical method, chromosomes affected by MSG or SR and likely to represent changes that are selected for during tumor progression were found to be different and mostly mutually exclusive. MSGs and SRs were not randomly associated within tumors, delineating two major pathways of chromosome alterations that consisted of either chromosome gains by MSG or chromosomal losses by both MSG and SR. CRCs showing microsatellite instability (MSI) presented with either normal karyotype or chromosome gains whereas MSS (microsatellite stable) CRCs exhibited a combination of the two pathways. Taken together, these data provide new insights into the respective involvement of MSG and SR in near-diploid colorectal cancers, showing how these processes target distinct portions of the genome and result in specific patterns of chromosomal changes according to MSI status

    Lower Richness of Small Wild Mammal Species and Chagas Disease Risk

    Get PDF
    A new epidemiological scenario involving the oral transmission of Chagas disease, mainly in the Amazon basin, requires innovative control measures. Geospatial analyses of the Trypanosoma cruzi transmission cycle in the wild mammals have been scarce. We applied interpolation and map algebra methods to evaluate mammalian fauna variables related to small wild mammals and the T. cruzi infection pattern in dogs to identify hotspot areas of transmission. We also evaluated the use of dogs as sentinels of epidemiological risk of Chagas disease. Dogs (n = 649) were examined by two parasitological and three distinct serological assays. kDNA amplification was performed in patent infections, although the infection was mainly sub-patent in dogs. The distribution of T. cruzi infection in dogs was not homogeneous, ranging from 11–89% in different localities. The interpolation method and map algebra were employed to test the associations between the lower richness in mammal species and the risk of exposure of dogs to T. cruzi infection. Geospatial analysis indicated that the reduction of the mammal fauna (richness and abundance) was associated with higher parasitemia in small wild mammals and higher exposure of dogs to infection. A Generalized Linear Model (GLM) demonstrated that species richness and positive hemocultures in wild mammals were associated with T. cruzi infection in dogs. Domestic canine infection rates differed significantly between areas with and without Chagas disease outbreaks (Chi-squared test). Geospatial analysis by interpolation and map algebra methods proved to be a powerful tool in the evaluation of areas of T. cruzi transmission. Dog infection was shown to not only be an efficient indicator of reduction of wild mammalian fauna richness but to also act as a signal for the presence of small wild mammals with high parasitemia. The lower richness of small mammal species is discussed as a risk factor for the re-emergence of Chagas disease
    corecore