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Genome-wide enhancer maps link risk 
variants to disease genes


Joseph Nasser1,26, Drew T. Bergman1,26, Charles P. Fulco1,24,26, Philine Guckelberger1,2,26, 
Benjamin R. Doughty1,3,26, Tejal A. Patwardhan1,4, Thouis R. Jones1, Tung H. Nguyen1, 
Jacob C. Ulirsch1,5, Fritz Lekschas6, Kristy Mualim3, Heini M. Natri3, Elle M. Weeks1, 
Glen Munson1, Michael Kane1, Helen Y. Kang3,7, Ang Cui1,8, John P. Ray1,25, 
Thomas M. Eisenhaure1, Ryan L. Collins1,9,10, Kushal Dey11, Hanspeter Pfister6, 
Alkes L. Price1,11,12, Charles B. Epstein1, Anshul Kundaje3,13, Ramnik J. Xavier1,14,15,16, 
Mark J. Daly1,17,18,19, Hailiang Huang1,17,18, Hilary K. Finucane1,17,18, Nir Hacohen1,18,20, 
Eric S. Lander1,21,22,23,27 ✉ & Jesse M. Engreitz1,3,7,27 ✉

Genome-wide association studies (GWAS) have identified thousands of noncoding 
loci that are associated with human diseases and complex traits, each of which could 
reveal insights into the mechanisms of disease1. Many of the underlying causal 
variants may affect enhancers2,3, but we lack accurate maps of enhancers and their 
target genes to interpret such variants. We recently developed the activity-by-contact 
(ABC) model to predict which enhancers regulate which genes and validated the 
model using CRISPR perturbations in several cell types4. Here we apply this ABC 
model to create enhancer–gene maps in 131 human cell types and tissues, and use 
these maps to interpret the functions of GWAS variants. Across 72 diseases and 
complex traits, ABC links 5,036 GWAS signals to 2,249 unique genes, including a class 
of 577 genes that appear to influence multiple phenotypes through variants in 
enhancers that act in different cell types. In inflammatory bowel disease (IBD), causal 
variants are enriched in predicted enhancers by more than 20-fold in particular cell 
types such as dendritic cells, and ABC achieves higher precision than other regulatory 
methods at connecting noncoding variants to target genes. These variant-to-function 
maps reveal an enhancer that contains an IBD risk variant and that regulates the 
expression of PPIF to alter the membrane potential of mitochondria in macrophages. 
Our study reveals principles of genome regulation, identifies genes that affect IBD and 
provides a resource and generalizable strategy to connect risk variants of common 
diseases to their molecular and cellular functions.

Each GWAS association could provide insights into a biological 
mechanism that underlies the risk of disease in humans1,5. However, 
identifying these mechanisms has proved to be challenging. GWAS 
associations often include dozens of variants in linkage disequilibrium 
with one another that tag a single causal variant. Most causal variants 
do not directly alter protein-coding sequences but instead occur in 
noncoding gene regulatory elements such as enhancers2,3, which 
can influence gene expression over long distances6,7. Furthermore, 
common diseases appear to involve contributions from multiple 
cell types, and many enhancers appear to act in specific cell types or 
states8. As such, connecting a GWAS association to function requires 
distinguishing among many possible variants, target genes and cell 
types1,5.

Recent developments have set the stage for addressing these chal-
lenges. To distinguish among multiple possible variants at a locus, 
recent studies have applied statistical fine-mapping to prioritize 
likely causal variants for thousands of GWAS signals9–11, including 
identifying 93 noncoding credible sets for IBD9. To link noncoding 

variants to their target genes and cell types, we recently developed 
the ABC model to identify enhancers in a particular cell type and 
predict their target genes based on data about chromatin state and 
three-dimensional contacts4. Together, these advances suggest an 
approach to connect GWAS signals to their target genes and cell 
types.

Here, we build ABC enhancer–gene maps for 131 biological samples 
(biosamples) and apply these maps to analyse fine-mapped genetic 
variants associated with 72 diseases and complex traits (Extended 
Data Fig. 1). These ABC maps link 5,036 GWAS signals to predicted 
genes and cell types, with improved accuracy compared to existing 
approaches. These predictions nominate previously undescribed 
regulatory mechanisms for IBD and identify genes that influence 
multiple diseases through effects in different cell types, including 
at the IBD risk locus at chromosome 10q22.3. Together, our study 
demonstrates a generalizable strategy to build regulatory maps of 
the genome to connect genetic associations to molecular mecha-
nisms of disease.
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ABC enhancer–gene maps in 131 biosamples
We used the ABC model to construct genome-wide maps of enhancer–
gene connections across 131 human biosamples, including 74 distinct 
primary cell types, tissues and cell lines from the ENCODE Project8 and 
other sources (Extended Data Fig. 1 and Supplementary Tables 1, 2). For 
each biosample, we calculated ABC scores for each gene and chromatin 
accessible element within 5 megabases (Mb) by multiplying the esti-
mates of enhancer activity and three-dimensional contact frequencies 
between enhancers and promoters. Candidate element–gene pairs 
that exceeded a chosen threshold were defined as ‘enhancer–gene 
connections’ and elements predicted to regulate at least one gene 
were defined as ‘ABC enhancers’ (Methods).

Across 131 biosamples, we identified 6,316,021 enhancer–gene con-
nections for 23,219 expressed genes and 269,539 unique enhancers. 
In a given biosample, ABC identified an average of 48,441 enhancer–
gene connections for 17,605 unique enhancers, comprising 2.9 Mb of 
enhancer sequence (around 12% of chromatin-accessible regions, which 
is 0.11% of the mappable genome) (Extended Data Fig. 2 and Supplemen-
tary Table 2). On average, each ABC enhancer was predicted to regulate 
2.7 genes, each gene was predicted to be regulated by 2.8 ABC enhancers 
(Extended Data Fig. 2) and only 19% of enhancer–gene connections were 
shared between pairs of biosamples (Extended Data Fig. 3).

We validated these predictions by comparing them to a compen-
dium of CRISPR perturbations that included 5,755 tested element–
gene pairs in 11 cell types and states (including previous data4,12 as 
well as additional CRISPR experiments that we performed here (Sup-
plementary Tables 3, 4)). ABC performed well at classifying regula-
tory connections (area under the precision–recall curve = 0.64) and 
outperformed other methods, similar to our previous observations 
using a subset of the CRISPR data4 (Extended Data Fig. 4 and Sup-
plementary Table 5).

Enrichment of GWAS variants in enhancers
To assess the use of these maps in connecting disease variants to 
functions, we first quantified the enrichment of GWAS variants in 
ABC enhancers (Supplementary Table 6). Leveraging our previous 
fine-mapping analyses9, we examined 24,922 fine-mapped variants with 
posterior inclusion probability (PIP) ≥ 10% for 72 diseases and traits, 
focusing on credible sets that did not contain any coding or splice site 
variants (Methods and Extended Data Fig. 5a).

Fine-mapped GWAS variants showed notable enrichments (up to 
48-fold) in ABC enhancers in cell types relevant to each trait (Fig. 1a). 
These enrichments were stronger in ABC enhancers than in previously 
defined enhancer regions (Fig. 1a and Extended Data Fig. 5b–d), and in 
some cases showed evidence of allele-specific acetylation of histone 3 
lysine 27 (H3K27ac) signals (Methods).

For example, fine-mapped variants for IBD were significantly 
enriched in ABC enhancers in 65 biosamples (Fisher’s exact test with 
Bonferroni correction P < 0.001; ‘enriched biosamples’), includ-
ing 56 of the 66 biosamples that correspond to immune cell types, 
immune cell lines, or gut tissue (Fig. 1a and Supplementary Table 6). 
The most-enriched biosample showed a 21-fold enrichment and cor-
responded to activated dendritic cells, which are known to have an 
important role in the initiation of inflammation in IBD13,14.

Across all signals for these 72 traits, ABC enhancers contained 40% 
of the 2,520 noncoding variants with PIP ≥ 95%, compared to 7.5% of all 
common noncoding variants (Fig. 1b and Extended Data Fig. 5e, f). For 
IBD and 12 blood cell traits, which have better coverage of relevant cell 
types in our dataset, ABC enhancers contained 46% of 732 noncoding 
variants with PIP ≥ 95% (Fig. 1c). Notably, this analysis probably under-
estimates the proportion of causal variants that reside in ABC enhanc-
ers because we still lack the appropriate data for many relevant cell 
types. We anticipate that most of the causal noncoding GWAS variants 
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Fig. 1 | ABC maps connect fine-mapped variants to enhancers, genes and 
cell types. a, Enrichment of fine-mapped IBD variants (PIP ≥ 10%) in ABC 
enhancers (left) and all other accessible regions (right) in each of the 131 
biosamples. MNP, mononuclear phagocytes. Box plots show the median 
(middle line) and interquartile range (boxes) and whiskers show observations 
less than or equal to quartiles ± 1.5× the interquartile range. b, Fraction of 
noncoding variants above a given PIP threshold that overlap an ABC enhancer 
in any biosample. Black line, weighted average across 72 traits. Traces are 
shown for PIP thresholds above which there are at least five variants. Dashed 
line, fraction of all common noncoding variants that overlap ABC enhancers.  

c, Precision–recall plot of connections between noncoding IBD credible sets 
and known IBD-associated genes14, considering the 37 credible sets with 1 
known gene within 1 Mb (Methods). Precision, fraction of identified genes 
corresponding to known genes; recall, fraction of the 37 known genes 
identified. For methods for which quantitative scores were available (for 
example, colocalization probability (Methods)), the plot shows the 
performance of choosing the gene with the best score per locus (Extended 
Data Fig. 6b). Data for eQTLs, 3D loops, and other enhancer–gene predictions 
were obtained from previous studies15,18,20–30.
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will reside in ABC enhancers when ABC maps are expanded to include 
hundreds of additional cell types (Extended Data Fig. 5e).

Evaluating gene predictions
We next used ABC to connect noncoding GWAS signals to target genes. 
For each trait, we intersected fine-mapped variants (PIP ≥ 10%) with 
ABC enhancers in enriched biosamples, and assigned each credible 
set to the target gene with the highest ABC score (ABC-Max) (Supple-
mentary Note 1).

For example, the IBD risk locus at chromosome 1q32.1 had been 
previously fine-mapped to identify two independent credible sets9 
(Extended Data Fig. 1b). Both credible sets include noncoding variants 

with PIP ≥ 10% that overlap ABC enhancers in monocytes stimulated 
with bacterial lipopolysaccharide (LPS), the biosample with the second 
highest enrichment for IBD (Fig. 1a). For both credible sets, ABC-Max 
predicted that these enhancers regulate multiple genes in the locus, but 
the gene with the highest ABC score was IL10, a key anti-inflammatory 
cytokine that is known to be important for IBD14 (Extended Data Fig. 6a).

To evaluate ABC-Max and other previous predictions, we examined 
a set of genes previously linked to IBD based on coding variants or evi-
dence from experimental models14 (Supplementary Tables 8, 9). We 
analysed the 37 noncoding credible sets within 1 Mb of one of these 
genes, and tested how often ABC-Max or other methods prioritized the 
known gene above all other genes in the locus (median genes per locus, 
15; range, 4–67). We visualized performance using a precision–recall 
plot, where recall is the fraction of credible sets for which the known 
gene is identified (sensitivity) and precision is the fraction of predicted 
genes corresponding to known genes (positive predictive value) (Fig. 1c).

As a baseline, we tested the heuristic of assigning each GWAS credible 
set to the closest gene—a method that is widely used to annotate GWAS 
loci15,16 and has been shown to assign approximately 70% of metabolite 
GWAS loci to genes with plausible biochemical functions17. Connect-
ing the lead variant to the closest gene correctly identified the known 
IBD-associated gene for 30 out of 37 credible sets (81% precision and 
81% recall) (Fig. 1c). A similar approach—which selects the closest 
transcription start site (TSS)—identified the known IBD-associated 
gene in 27 out of 37 cases (73% precision and 73% recall) (Fig. 1c,  
Supplementary Note 2).

We next evaluated other approaches to connect regulatory variants 
to disease-associated genes, including predictions based on signals 
from expression quantitative trait loci (eQTLs)18–21, three-dimensional 
contacts22, gene set enrichment23 or other enhancer–gene maps24–31 
(Methods). Most of these approaches achieved lower precision and 
recall than closest gene (Fig. 1c).

Finally, we evaluated ABC-Max. Of the 37 credible sets, 18 included a 
variant that overlapped an ABC enhancer in an enriched biosample, and 
ABC-Max identified the known gene in 17 out of 18 cases (94% precision 
and 49% recall) (Fig. 1c). Thus, ABC-Max identifies a high-confidence set of 
genes at these IBD GWAS loci, with higher precision than other enhancer 
maps. Although ABC-Max had lower recall than the closest gene, the 
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fraction of loci with a prediction will probably increase upon expanding 
the ABC maps to include additional relevant cell types in the gut.

Because this curated gene set may have certain biases, we conducted 
additional analyses to benchmark ABC-Max for IBD and other traits 
(Supplementary Note 2). We found that ABC-Max selected genes at IBD 
loci that showed stronger gene set enrichments compared to other 
approaches (Extended Data Fig. 6b), often selected the gene with the 
closest TSS (Extended Data Fig. 6c) and strongly enriched for identify-
ing high-confidence genes for an independent set of 10 quantitative 
blood traits (17-fold enrichment) (Extended Data Fig. 6d). Together, 
these analyses demonstrate that ABC maps can accurately connect 
fine-mapped variants to target genes for IBD and other complex traits.

We made several observations that help to explain the good perfor-
mance of ABC-Max (Supplementary Note 2). Notably, assigning each 
credible set to the gene with the strongest ABC score (‘ABC-Max’; pre-
cision = 94% for known IBD-associated genes) performed far better 
than assigning each credible set to all genes linked to an IBD variant 
(‘ABC-All’; precision = 17%) (Extended Data Fig. 6e). This was because 
individual variants often overlapped ABC enhancers that were predicted 

to regulate multiple genes (median, 3; range, 1–17), with the known gene 
having the highest ABC score (Extended Data Fig. 6a). Choosing the gene 
with the highest score was also important for optimal performance of 
other prediction methods, such as those based on eQTLs (Extended 
Data Fig. 6e). This complexity appears to be a fundamental feature of 
mammalian gene regulation: cis-eQTL studies indicate that noncoding 
variants often regulate multiple genes32, and CRISPR experiments have 
identified individual enhancers that regulate up to eight genes in cis4,33. 
Our observations are consistent with a model where—although variants 
often affect the expression of multiple genes—only a subset of these 
effects are likely to be relevant to disease34 (Supplementary Note 1).

Regulatory mechanisms at GWAS loci
Having demonstrated that ABC identifies cell types and genes relevant 
to specific phenotypes, we next applied ABC-Max to GWAS signals for 
72 diseases and traits. ABC-Max made a prediction for 5,036 noncoding 
credible sets, nominating a total of 4,976 fine-mapped variants that 
overlapped enhancers linked to 2,249 unique genes (Supplementary 
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Table 10). The distance from the noncoding variant in the ABC enhancer 
to the TSS of the predicted target gene ranged from less than 1 kilobase 
(kb) to 1.1 Mb (median, 13 kb), and 1,139 out of 5,036 predictions (23%) 
involved a gene that was not the closest (Fig. 2a).

These predictions provide a resource for identifying genes, pathways 
and regulatory properties of GWAS loci. For example, ABC-Max made 
predictions for 47 noncoding IBD credible sets, nominating 43 unique 
genes (4 genes were linked to 2 independent signals in the same locus) 
(Fig. 2b and Supplementary Tables 10, 11). Many of these genes have 
previously been reported to have functions in immunity and inflamma-
tion and the predicted genes were enriched for genes in the interferon-γ 
pathway (6 genes; 12-fold enrichment), lymphocyte activation (11 genes; 
7-fold enrichment) and regulation of transcription from the promoter of 
RNA polymerase II (21 genes; 5-fold enrichment) (Fig. 2b). ABC-Max also 
identified genes that were not the closest or previously annotated gene, 
such as at the IBD locus at chromosome 22q13, which has been annotated 
as corresponding to TAB1 (also known as MAP3K7IP1)35,36. Here, ABC-Max 
linked variants in two independent credible sets to platelet-derived 
growth factor-β (PDGFB) in mononuclear phagocytes (for example, 
monocytes, macrophages and dendritic cells), supporting a causal role 
for PDGF signalling in IBD37 (Fig. 2c). We also identified intergenic IBD 
risk variants linked to LRRC32 and RASL11A (Extended Data Fig. 7 and 
Supplementary Note 3), and variants located in the introns of ANKRD55 
and ZMIZ1 were linked to different nearby genes (see below).

Cell-type-specific links to disease
Identifying the cell type in which a gene influences disease can pro-
vide additional insights into disease aetiology. We characterized the 
cell-type specificity of ABC predictions, and found that ABC enhanc-
ers containing fine-mapped variants were active in a median of only 4 
biosamples, compared to 120 biosamples for the promoters of their 
target genes (Fig. 3a).

For IBD, the cell-type specificity of ABC-Max predictions identified 
cases for which a variant was predicted to act only in specific cell lineages 
or stimulated immune cell states (Extended Data Fig. 8a, b) and enabled 
the grouping of genes by cell type to improve the detection of enriched 
gene sets (Extended Data Fig. 8c). At one IBD locus (chromosome 5q11.2), 
we identified a single fine-mapped IBD risk variant (rs7731626, PIP = 28%) 
that overlapped an ABC enhancer and was linked to IL6ST only in T cell 
subsets and fetal thymus tissue, even though IL6ST is expressed in most 
cell types. Using CRISPR interference (CRISPRi), we confirmed that this 
predicted enhancer regulates IL6ST in a T cell line but not in three other 
B cell or monocytic cell lines (Extended Data Fig. 8d).

Such cell-type-specific effects appeared to lead to cases in which a 
single gene could affect multiple traits. For example, IKZF1 encodes a 
transcription factor that is involved in several stages of haematopoietic 
differentiation, and this gene was linked by ABC to IBD and 11 other traits 
through different variants in 18 credible sets, including variants associ-
ated with erythrocyte, monocyte or neutrophil counts that overlapped 
ABC enhancers in erythroblasts, monocytes or CD34+ haematopoietic 
progenitors, respectively (Extended Data Fig. 9a).

In total, we identified 577 genes that were each linked by ABC-Max to 
different traits through different variants (Fig. 3b and Supplementary 
Table 12), and for which the predicted variants overlapped ABC enhancers 
in different sets of biosamples. These 577 genes appeared to have complex 
enhancer landscapes: they had (1) more predicted ABC enhancer con-
nections (median of 466 across all cell types versus 261 for other genes); 
(2) more ABC enhancer connections per cell type in which the gene was 
expressed (median of 4.8 versus 3.3); and (3) more surrounding noncoding 
sequence (median of 301 kb versus 128 kb distance to the closest neigh-
bouring TSSs, independent of ABC predictions) (Fig. 3c and Extended Data 
Fig. 9b, c). These observations suggest that genes with complex enhancer 
landscapes are more likely to influence multiple traits, which may reflect 
constraints on their precise cell-type-specific transcriptional control38.

From association to function at 10q22.3
To explore how ABC maps could accelerate experimental studies to 
characterize individual GWAS loci, we examined the IBD risk locus 
at chromosome 10q22.3, for which ABC prioritized an unexpected 
gene. A single high-probability variant (rs1250566, PIP = 19%), which 
was located in an intron of ZMIZ1, overlapped with an ABC enhancer in 
several immune cell types, including mononuclear phagocytes (Fig. 4a, 
b). Although this locus has previously been annotated as corresponding 
to ZMIZ115,35,39, ABC-Max linked this variant to a different nearby gene, 
PPIF. PPIF has a higher ABC score than ZMIZ1 because the variant is in 
more frequent three-dimensional contact with the promoter of PPIF 
than with the promoter of ZMIZ1 (by a factor of 2.3).

To obtain evidence that variation in the predicted PPIF enhancer could 
affect the risk of IBD, we used CRISPRi-FlowFISH (CRISPRi combined 
with fluorescence in situ hybridization and flow sorting)4 to perturb 
each of the 163 accessible elements in a 712-kb region around PPIF in 
four human immune cell lines—THP1, BJAB, GM12878 and Jurkat cells—
with and without stimulation with the appropriate immune ligands. We 
identified 14 enhancers that regulated PPIF expression in at least one of 
these conditions (Extended Data Fig. 10a, b and Supplementary Table 4). 
Only one of these 14 enhancers contained a fine-mapped IBD variant (the 
enhancer that was initially predicted by ABC-Max), and this enhancer 
had a particularly strong effect on PPIF expression (up to 43% effect in 
THP1 cells in unstimulated and LPS-stimulated conditions, two-sided 
Student’s t-test, P < 10−111) (Fig. 4c and Extended Data Fig. 10b–e).

PPIF encodes cyclophilin D, a ubiquitously expressed protein that 
regulates metabolism, reactive oxygen species signalling and cell death 
by controlling the mitochondrial permeability transition and mitochon-
drial membrane potential (Δψm)40. Accordingly, we tested whether the 
PPIF enhancer containing the IBD variant could tune Δψm in THP1 cells. 
We infected cells with a pool of CRISPRi guide RNAs (gRNAs) that target 
the PPIF enhancer and promoter, stained cells with MitoTracker Red (a 
fluorescent dye for which the signal increases with Δψm), sorted cells 
into three bins based on their level of fluorescence, and sequenced 
the gRNAs in each bin to infer their effects on Δψm (Extended Data 
Fig. 10f). CRISPRi targeting of the PPIF enhancer or promoter indeed 
increased Δψm in THP1 cells in LPS-stimulated, but not unstimulated, 
conditions (Fig. 4d and Extended Data Fig. 10g, h), consistent with the 
expected direction of effect of PPIF. These experiments indicate that 
this enhancer can tune the metabolic state of mitochondria in cells 
that respond to inflammatory stimuli. Notably, changes in Δψm have 
been previously linked to inflammatory responses in macrophages41, 
suggesting a path by which tuning PPIF expression could affect IBD risk.

Notably, PPIF has an extremely complex enhancer landscape (Fig. 3c)  
(top 0.3% of genes with the most ABC enhancer connections) and the 
PPIF locus also contains GWAS signals for 39 other diseases and traits in 
addition to IBD (Extended Data Fig. 10a). By comparing these variants to 
our CRISPRi data, we found a distinct enhancer that regulated PPIF only 
in GM12878 lymphoblastoid cells and contained a variant associated 
with lymphocyte count and multiple sclerosis (Extended Data Fig. 10b–
d). Together, these observations suggest that cell-type-specific tran-
scriptional regulation of PPIF may influence risk for multiple complex 
diseases and traits (Supplementary Note 4).

Discussion
This research created genome-wide maps of more than six million 
enhancer–gene connections that illuminate the functions of disease 
variants. These maps revealed new genes and pathways for IBD, nomi-
nated 577 genes that control different traits through effects in differ-
ent cell types and identified a role for an enhancer of PPIF in tuning 
mitochondrial function in macrophages.  We have also prospectively 
applied ABC maps to identify a variant that regulates TET2 in haemat-
opoietic progenitors to influence risk for clonal haematopoiesis42. By 
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markedly narrowing the search space of possible variants, cell types 
and target genes at any given GWAS locus, ABC maps should acceler-
ate variant-to-function studies for many diseases. To facilitate such 
studies, these maps are available at https://www.engreitzlab.org/abc/.

Our study has several limitations that highlight areas for future work 
(Supplementary Note 5). First, ABC does not perfectly predict the effects 
of distal enhancers and does not capture other types of regulatory ele-
ments. Second, ABC-Max assumes a single causal gene per variant, 
although enhancers that contain disease variants often appear to have 
highly pleiotropic effects. Third, most of these ABC maps involve analysis 
of data from a single individual and therefore miss enhancers that are 
present only in certain genotypes or environments. Fourth, assessing 
the performance of gene predictions requires good sets of gold-standard 
genes, which remain limited and may contain biases (for example, towards 
the closest gene or towards genes that tolerate coding variation). Expand-
ing the model beyond the current assumptions and performing more sys-
tematic experimental studies will be required to address these limitations.

In summary, our approach highlights a path to creating a compre-
hensive map of enhancer regulation in the human genome. By refin-
ing computational models such as ABC and collecting the necessary 
epigenomic data, it should be possible to create an accurate map of 
enhancers and their target genes in cis across thousands of cell types 
and states in the human body. These maps could then be used to link 
noncoding variants to disease-associated genes and cell types. Such 
a project is becoming feasible, and will be an essential resource for 
understanding gene regulation and the genetic basis of human diseases.
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Methods

Data reporting
No statistical methods were used to predetermine sample size. The 
experiments were not randomized and the investigators were not 
blinded to allocation during experiments and outcome assessment.

Immune cell lines
We generated epigenomic data to build the ABC model and/or per-
formed CRISPRi experiments in the following human immune cell 
lines: THP1 (monocytic-like cell line, acute monocytic leukaemia), 
BJAB (B-cell-like cell line, EBV-negative inguinal Burkitt’s lymphoma), 
GM12878 (EBV-immortalized lymphoblastoid cell line), U937 
(monocytic-like cell line, histiocytic lymphoma) and Jurkat (T-cell-like 
cell line, T cell leukaemia).

Cell culture. We maintained cells at a density between 100,000 and 
1,000,000 cells per ml (250,000–1,000,000 per ml for GM12878) in 
RPMI-1640 (Thermo Fisher Scientific) with 10% heat-inactivated FBS 
(15% for GM12878; HIFBS, Thermo Fisher Scientific), 2 mM l-glutamine 
and 100 units per ml streptomycin and 100 mg ml−1 penicillin by diluting 
cells 1:8 in fresh medium every 3 days. Cell lines were regularly tested for 
mycoplasma, and authenticated through comparison of epigenomic 
data to published datasets.

Stimulation conditions for ABC maps and CRISPRi experiments. We 
stimulated BJAB cells with 4 μg ml−1 anti-CD40 (Invitrogen, 140409-82) 
and 10 μg ml−1 anti-IgM (Sigma-I0759) for 4 h. We stimulated Jurkat cells 
with 5 μg ml−1 anti-CD3 (Biolegend-317315) and 100 ng ml−1 phorbol 
12-myristate 13-acetate (PMA, Sigma-P1585) for 4 h. We stimulated THP1 
cells with 1 μg ml−1 bacterial LPS from Escherichia coli K12 (Invivogen, 
tlrl-peklps) for 4 h. We stimulated U937 cells with 200 ng ml−1 LPS for 4 h.

Stimulation conditions for ABC maps across an extended time 
course in THP1 cells. For THP1 cells, we generated epigenomic data 
examining a longer time course, by stimulating with PMA (100 ng ml−1) 
for 12 h, then removing PMA and adding LPS (1 μg ml−1) and profiling 
at 0, 1, 2, 6, 12, 24, 48, 72, 96 and 120 h after addition of LPS. Because 
THP1 cells adhere when stimulated with PMA (changing into a more 
macrophage-like state), we collected the cells by taking out the medium, 
washing twice, adding TrypLE for 5 min at 37 °C, then supplementing 
with 100 μL of medium, removing cells from the round-bottom plate 
and pelleting. These data were used to generate the ABC predictions 
included in the 131 biosamples.

Epigenomic profiling of immune cell lines
To build ABC maps in human immune cell lines, we generated data 
using ATAC-seq and chromatin immunoprecipitation sequencing 
(ChIP–seq) of H3K27ac in BJAB, Jurkat, THP1 and U937 cells, with and 
without stimulation with the ligands described above.

ATAC-seq. We applied ATAC-seq as previously described43, with modi-
fications. In brief, we washed 50,000 cells once with 50 μl of cold 1× PBS 
and added 50 μl of Nuclei Isolation EZ Lysis buffer (Sigma, NUC101-1KT) 
to resuspend gently, immediately centrifuging at 500g for 10 min at 
4 °C. The lysis buffer was decanted away from the nuclei pellet. After-
wards, we resuspended the nuclei in 100 μl of Nuclei Isolation EZ Lysis 
buffer again and centrifuged at 500g for 5 min at 4 °C and re-decanted 
the lysis buffer, which we found to decrease mitochondrial reads al-
though at the cost of library complexity. We then resuspended the 
nuclear pellet in 50 μl of transposition reaction mix (25 μl buffer TD, 
2.5 μl TDE1 (Illumina 15028212); 7.5 μl water, 15 μl PBS, to increase salin-
ity, which we found to increase the signal-to-noise ratio) and incubated 
the mix at 37 °C for 30 min in a PCR block. Immediately after the trans-
position reaction, we split the 50 μl reaction volume into two and we 

added 25 μl of guanidine hydrochloride (buffer PB, Qiagen, 28606) to 
each as a chaotropic agent to stop the reaction and dissociate the pro-
teins and transposase from the DNA. Keeping one of the reactions as a 
backup, we proceeded with one by adding 1.8× SPRI beads (Agencourt 
A63881), waiting 5 min for the DNA to associate to the beads, and then 
washing the beads twice using 80% ethanol. We then eluted the DNA 
from the beads using 10 μl of water and added to it 25 μl NEBNext HiFi 
2× PCR MasterMix (NEB M0541), with 2.5 μl of each of the dual-indexed 
Illumina Nextera primers (25 μM). We amplified the PCR reaction for 15 
cycles, as previously described33. We purified amplified libraries and 
removed adapters using two clean-ups with 1.8× volume SPRI (Agen-
court, A63881). We sequenced these libraries on an Illumina HiSeq 
2500. We filtered, aligned and processed the data to generate BAM 
files as previously described33.

H3K27ac ChIP–seq. We generated and analysed ChIP–seq data from 
5 million cells in each cell line and stimulation state, following previ-
ously described protocols44. Before collecting the cells for ChIP–seq, 
the cells (1 million cells per ml) were replenished by a 1:2 (v/v) split in 
fresh medium and allowed to grow for 4 h. Then, 10 million cells were 
collected from each cell type at 500,000 cells per ml and washed twice 
in cold PBS. Cells were resuspended in warm PBS with 1% formaldehyde 
(28906, Thermo Scientific) and incubated at 37 °C for 10 min. Crosslink-
ing was quenched by adding glycine to a concentration of 250 mM and 
incubating for 5 min at 37 °C. Cells were placed on ice for 5 min, then 
washed twice in ice-cold PBS and snap-frozen in liquid nitrogen and 
stored. Later, crosslinked cells were lysed in 1 ml cell lysis buffer (20 mM 
Tris pH 8.0, 85 mM KCl, 0.5% NP-40) and incubated on ice for 10 min. 
The nuclear pellet was isolated by spinning the cell lysis mix at 5,600g 
at 4 °C for 3.5 min and discarding the supernatant. Nuclear pellets were 
lysed by adding 1 ml nuclear lysis buffer (10 mM Tris-HCl pH 7.5, 1% NP-
40 alternative (CAS 9016-45-9), 0.5% sodium deoxycholate, 0.1% SDS) 
with protease inhibitors on ice for 10 min. The chromatin-containing 
nuclear lysate was sonicated 3× using a Branson sonifier (on 0.7 s, off 
1.3 s, time 2 min, watts 10–12), with 1 min rest between sonifications. 
Sonicated chromatin was spun down at maximum speed. Then, 300 μl 
of the clarified supernatant was diluted 1:1 with ChIP dilution buffer 
(16.7 mM Tris-HCl pH 8.1, 1.1% Triton X-100, 167 mM NaCl, 1.2 mM EDTA, 
0.01% SDS). To immunoprecipitate H3K27ac, 3 μl of H3K27ac mono-
clonal antibody (39685, Active Motif) was added to each sample and 
rotated overnight at 4 °C. The following morning, 50 μl of a 1:1 mix of 
protein-A (10008D, Invitrogen) and protein-G Dynabeads magnetic 
beads (10004D, Life Technologies) were washed with blocking buffer 
(PBS, 0.5% Tween-20, 0.5% BSA with protease inhibitors), resuspended 
in 100 μl blocking buffer and added to each sample. The samples were 
rotated end-over-end for 1 h at 4 °C to capture antibody complexes, then 
washed as follows: once with 200 μl Low-Salt RIPA buffer (0.1% SDS, 1% 
Triton X-100, 1 mM EDTA, 20 mM Tris-HCl pH 8.1, 140 mM NaCl, 0.1% 
sodium deoxycholate), once with 200 μl High-Salt RIPA buffer (0.1% 
SDS, 1% Triton X-100, 1 mM EDTA, 20 mM Tris-HCl pH 8.1, 500 mM NaCl, 
0.1% sodium deoxycholate), twice with 200 μl LiCl buffer (250 mM LiCl, 
0.5% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA, 10 mM Tris-HCl 
pH 8.1) and twice with 200 μl TE buffer (10 mM Tris-HCl pH 8.0, 1 mM 
EDTA pH 8.0). Chromatin was then eluted from the beads with 60 μl ChIP 
elution buffer (10 mM Tris-HCl pH 8.0, 5 mM EDTA, 300 mM NaCl, 0.1% 
SDS). Crosslinking was reversed by adding 8 μl of reverse crosslinking 
enzyme mix (250 mM Tris-HCl pH 6.5, 62.5 mM EDTA pH 8.0, 1.25 M NaCl, 
5 mg ml−1 proteinase K (25530-049, Invitrogen), 62.5 μg ml−1 RNase A 
(111199150001, Roche)) to each immunoprecipitated sample, as well 
as to 10 μl of the sheared chromatin input for each sample brought to 
volume of 60 μl ChIP elution buffer. Reverse crosslinking reactions 
were incubated 2 h at 65 °C and cleaned using Agencourt Ampure XP 
SPRI beads (A63880, Beckman Coulter) with a 2× bead:sample ratio. 
Sequencing libraries were prepared with the KAPA Library Preparation 
kit (KK8202, KAPA Biosystems). ChIP libraries were sequenced using 



single-end sequencing on an Illumina Hiseq 2500 machine (read 1, 76 
cycles; index 1, 8 cycles), to a depth of more than 30 million reads per 
ChIP sample.

Curation of published epigenomic data
Supplementary Table 2 lists the data sources for each ABC biosample, 
and Supplementary Table 1 describes the epigenomic datasets gener-
ated for this study.

ENCODE. We downloaded BAM files for DNase-seq and H3K27ac ChIP–
seq experiments from the ENCODE Portal on 17 July 20178. We selected 
the hg19-aligned BAM files that were marked as ‘released’ by the ENCODE 
Portal and were not flagged as ‘unfiltered’, ‘extremely low spot score’, ‘ex-
tremely low read depth’, ‘NOT COMPLIANT’ or ‘insufficient read depth’.

Roadmap. We downloaded BAM files for DNase-seq and H3K27ac ChIP–
seq from the Roadmap Epigenomics Project (http://egg2.wustl.edu/
roadmap/data/byFileType/alignments/consolidated/) on 12 July 201745.

Other studies. We downloaded FASTQ files for DNase-seq, ATAC-seq 
and ChIP–seq data from 13 other studies (Supplementary Table 2), 
and processed them using our custom pipelines as described below.

Merging cell types. We created a list of cell types across all sources 
for which we had at least one chromatin accessibility experiment 
(DNase-seq or ATAC-seq) and one H3K27ac ChIP–seq experiment. In 
cases in which the same cell types were included in data from the Road-
map Epigenome Project and also from the ENCODE Portal, we used the 
processed data from Roadmap. In some cases, we combined data from 
multiple sources (for example, ENCODE data and our own datasets) to 
expand the number of cell types considered. As a result of this merging, 
some ‘cell types’ in our dataset represent data from a single donor and 
experimental sample, whereas others involve a mixture of multiple 
donors and/or experimental samples.

Processing of ATAC-seq and ChIP–seq data
We aligned reads using BWA (v.0.7.17)46, removed PCR duplicates 
using the MarkDuplicates function from Picard (v.1.731, http://picard.
sourceforge.net) and filtered to uniquely aligning reads using samtools 
(MAPQ ≥ 30, https://github.com/samtools/samtools)47. The resulting 
BAM files were used as inputs into the ABC model.

ABC model predictions
We used the ABC model (https://github.com/broadinstitute/
ABC-Enhancer-Gene-Prediction) to predict enhancer–gene connec-
tions in each cell type, based on measurements of chromatin acces-
sibility (ATAC-seq or DNase-seq), histone modifications (H3K27ac 
ChIP–seq), and chromatin conformation (Hi-C) as previously 
described4. In a given cell type, the ABC model reports an ABC score 
for each element–gene pair, where the element is within 5 Mb of the 
TSS of the gene. We previously found that the exact window used does 
not significantly affect performance; here, we used 5 Mb to maintain 
consistency with our previous study4.

In brief, for each cell type, we first called peaks in the chromatin 
accessibility dataset using MACS2 with a lenient P-value cut-off of 0.1.

Second, we counted chromatin accessibility reads in each peak and 
retained the top 150,000 peaks with the most read counts. We then 
resized each of these peaks to be 500 bp centred on the peak sum-
mit. To this list we added 500 bp regions centred on all gene TSS’s and 
removed any peaks overlapping blacklisted regions (version 1 from 
https://sites.google.com/site/anshulkundaje/projects/blacklists)8,48. 
Any resulting overlapping peaks were merged. We call the resulting set 
of regions candidate elements.

Third, we calculated element activity by first counting reads in each 
candidate element in chromatin accessibility and H3K27ac ChIP–seq 

experiments, and then taking the geometric mean of the two assays. 
Chromatin accessibility and H3K27ac ChIP–seq signals in each candi-
date element were quantile-normalized to the distribution observed 
in K562 cells.

Fourth, we calculated element–promoter contact using the average 
Hi-C signal across 10 human Hi-C datasets as described below.

Finally, we computed the ABC score for each element–gene pair 
as the product of activity and contact, normalized by the product of 
activity and contact for all other elements within 5 Mb of that gene.

Average Hi-C. To generate a genome-wide averaged Hi-C dataset, we 
downloaded Knight–Ruiz normalized Hi-C matrices for 10 human cell 
types4. For each cell type, we first transformed the Hi-C matrix for each 
chromosome to be doubly stochastic. We then we replaced the entries 
on the diagonal of the Hi-C matrix with the maximum of its four neigh-
bouring bins. Next, we replaced all entries of the Hi-C matrix with a value 
of NaN or corresponding to Knight–Ruiz normalization factors <0.25 
with the expected contact under the power-law distribution in the cell 
type. We subsequently scaled the Hi-C signal for each cell type using 
the power-law distribution in that cell type as previously described. 
Finally, we computed the ‘average’ Hi-C matrix as the arithmetic mean 
of the 10 cell-type-specific Hi-C matrices. This Hi-C matrix (5-kb reso-
lution) is available at ftp://ftp.broadinstitute.org/outgoing/lincRNA/
average_hic/average_hic.v2.191020.tar.gz.

The averaged Hi-C contacts correlate well with cell-type-specific Hi-C 
contacts (for example, R2 = 0.91 for K562 cells) (Supplementary Fig. 1). 
We have previously shown that the ABC score is able to make accurate 
cell-type-specific enhancer–gene predictions using this averaged Hi-C 
dataset and outperforms other approaches that use loops or distance 
instead of quantitative contact frequency4. We also find here that using 
averaged Hi-C data performs similarly to using cell-type-specific pro-
moter capture Hi-C (PC-HiC) data (Extended Data Fig. 4e).

PC-Hi-C. In some evaluations of the performance of the ABC model 
to CRISPR data (Extended Data Fig. 4e–h), we used ABC predictions 
for which the contact component of the ABC score is derived from the 
raw counts in PC-HiC experiments. The PC-HiC data was processed as 
follows. First we downloaded PC-HiC raw count data from the BLUE-
PRINT consortium22. Second, contacts from restriction fragments that 
overlap baited promoter regions were linearly adjusted based on the 
total number of detected contacts for the baited region(s). Third, we 
re-binned the data from restriction fragment sites to 5-kb resolution. 
Fourth, to fill in missing values for very short-range contacts, we im-
puted contact data between the baited restriction fragment and itself 
using the power-law distribution.

The contact for an enhancer–gene pair is assigned as the counts 
observed in the PC-HiC experiment corresponding to the baited fragment 
overlapping the gene promoter and the 5-kb bin overlapping the element.

Estimating promoter activity. In each cell type, we assign enhanc-
ers only to genes for which the promoters are ‘active’ (that is, genes 
for which the gene is expressed and that promoter drives its expres-
sion). We defined active promoters as those in the top 60% of activity 
(geometric mean of chromatin accessibility and H3K27ac ChIP–seq 
counts). We used the following set of TSSs (one per gene symbol)  
for ABC predictions, as previously described4: https://github.com/
broadinstitute/ABC-Enhancer-Gene-Prediction/blob/v0.2.1/reference/
RefSeqCurated.170308.bed.CollapsedGeneBounds.bed. We note that 
this approach does not account for cases in which genes have multiple 
TSSs either in the same cell type or in different cell types.

For computing global statistics of ABC enhancer–gene connections 
(Extended Data Fig. 2), we considered all distal element–gene connec-
tions (‘distal elements’ here refers to chromatin-accessible regions that 
are not promoters of protein-coding genes) with an ABC score ≥ 0.015 
and within a distance of 2 Mb.

http://egg2.wustl.edu/roadmap/data/byFileType/alignments/consolidated/
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https://github.com/broadinstitute/ABC-Enhancer-Gene-Prediction/blob/v0.2.1/reference/RefSeqCurated.170308.bed.CollapsedGeneBounds.bed
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Processing ABC predictions for variant overlaps
To intersect ABC predictions with variants, we took the predictions 
from the ABC model and applied the following additional process-
ing steps. First, we considered all distal element–gene connections 
with an ABC score ≥ 0.015 (Extended Data Fig. 4; lower threshold than 
our previous study4 to increase recall and identify gain-of-function 
variants that increase enhancer activity) and all distal or proximal 
promoter–gene connections with an ABC score ≥ 0.1 (based on our 
previous experimental data4). Second, we shrunk the approximately 
500-bp regions by 150-bp on either side, resulting in an approximately 
200-bp region centred on the summit of the accessibility peak. This is 
because, although the larger region is important for counting reads 
in H3K27ac ChIP–seq, which occur on flanking nucleosomes, DNA 
sequences important for enhancer function—such as transcription 
factor footprints—are most often found in the central nucleosome-free 
region49. In practice, this adjustment does not substantially affect the 
enrichment of fine-mapped IBD variants (Extended Data Fig. 5d). Third, 
we included enhancer—gene connections spanning up to 2 Mb, which 
is greater than the maximum distance of the longest-range enhancer–
gene connection that we identified in CRISPR experiments to date 
(around 1.8 Mb).

CRISPRi-FlowFISH
We applied CRISPRi-FlowFISH to very sensitively test the effects of distal 
elements on gene expression4. In brief, CRISPRi-FlowFISH involves tar-
geting putative enhancers with many independent gRNAs (median = 45) 
in a pooled screen using CRISPR interference (CRISPRi), which alters 
chromatin state through the recruitment of catalytically dead Cas9 fused 
to a KRAB effector domain. After infecting a population of cells with a 
gRNA lentiviral library, we estimate the expression of a gene of interest. 
Specifically, we first use fluorescence in situ hybridization (FISH, Affym-
etrix PrimeFlow assay) to quantitatively label single cells according to 
their expression of an RNA of interest. Second, we sort labelled cells with 
fluorescence-activated cell sorting (FACS) into six bins based on RNA 
expression. Third, we use high-throughput sequencing to determine the 
frequency of gRNAs from each bin. And finally, we compare the relative 
abundance of gRNAs in each bin to compute the effects of gRNAs on RNA 
expression. CRISPRi-FlowFISH provides around 300-bp resolution to 
identify regulatory elements, has the power to detect effects of as low 
as 10% on gene expression and provides effect size estimates that match 
those observed in genetic deletion experiments4.

Here we applied CRISPRi-FlowFISH to comprehensively test all puta-
tive enhancers in an approximately 700-kb region around PPIF, and 
to validate additional selected enhancers (for 12 additional genes) 
that contained variants that are associated with IBD or other immune 
diseases or traits. For CRISPRi-FlowFISH experiments for PPIF, we 
designed gRNAs tiling across all accessible regions (here, defined as 
the union of the MACS2 narrow peaks and 250-bp regions on either 
side of the MACS2 summit) in the range chr10:80695001–81407220 
in any of the following cell lines (with or without stimulation as 
described above): THP1, BJAB, Jurkat, GM12878, K562, Karpas-422 or 
U937. For CRISPRi-FlowFISH experiments for other genes, we included 
gRNAs targeting the promoter of the predicted gene and selected 
enhancer(s) nearby. We excluded gRNAs with low specificity scores 
or low-complexity sequences as previously described4. We generated 
cell lines expressing KRAB-dCas9-IRES-BFP under the control of a 
doxycycline-inducible promoter (Addgene, 85449) and the reverse 
tetracycline transactivator (rtTA) and a neomycin resistance gene under 
the control of an EF1α promoter (ClonTech), as previously described12. 
For each, we sorted polyclonal populations with high BFP expression 
after addition of doxycycline. For GM12878 cells, we used an alternative 
lentiviral construct to express the rtTA with a hygromycin-resistance 
gene, as GM12878 appeared to be resistant to selection with neomycin 
(also known as G418).

We performed CRISPRi-FlowFISH using ThermoFisher PrimeFlow 
(ThermoFisher 88-18005-210) as previously described, using the probe 
sets listed in Supplementary Table 13. To ensure robust data, we only 
included probe sets with twofold signal over unstained cells, and 
required an uncorrected knockdown at the TSS of >20%. We analysed 
these data as previously described4. In brief, we counted gRNAs in each 
bin using Bowtie50 to map reads to a custom index, normalized gRNA 
counts in each bin by library size, then used a maximum-likelihood 
estimation approach to compute the effect size for each gRNA. We used 
the limited-memory Broyden–Fletcher–Goldfarb–Shanno algorithm 
(implemented in the R stats4 package) to estimate the most likely 
log-normal distribution that would have produced the observed guide 
counts, and the effect size for each gRNA is the mean of its log-normal 
fit divided by the average of the means from all negative-control 
gRNAs. As previously described, we scaled the effect size of each gRNA 
in a screen linearly so that the strongest 20-guide window at the TSS of 
the target gene has an 85% effect, in order to account for non-specific 
probe binding in the RNA FISH assay (this is based on our observa-
tion that promoter CRISPRi typically shows 80–90% knockdown by 
qPCR)4. We averaged the effect sizes of each gRNA across replicates 
and computed the effect size of an element as the average of all gRNAs 
targeting that element. We assessed significance using a two-sided 
t-test comparing the mean effect size of all gRNAs in a candidate ele-
ment to all negative-control guides. We computed the false-discovery 
rate (FDR) for elements using the Benjamini–Hochberg procedure and 
used an FDR threshold of 0.05 to call significant regulatory effects.

Comparison of ABC predictions to genetic perturbations. We evalu-
ated the ability of the ABC score and other enhancer–gene prediction 
methods to predict the results of genetic perturbations using a preci-
sion–recall framework. For this analysis the true-positive data are the 
experimentally measured element–gene pairs that are statistically 
significant and for which the perturbation of the element resulted 
in a decrease in gene expression. For these comparisons, (1) we only 
considered experimentally tested elements in which the element is 
not within 500 bp of an annotated gene TSS; (2) for perturbations us-
ing CRISPRi we excluded pairs in which the element resides within 
the gene body of the assayed gene; (3) we excluded non-significant 
pairs for which the power to detect a 25% change in gene expression 
was less than 80%; and (4) we only included pairs for which the gene 
is protein-coding (although the ABC model can make predictions for 
non-coding genes, many of the other predictions methods that we 
compare to do not make predictions for such genes).

For each experimentally measured element–gene–cell-type tuple, we 
intersected this tuple with the tuple in the predictions database corre-
sponding to the same cell type, same gene and overlapping element. In 
cases in which the genomic bounds of an experimentally tested element 
overlap multiple predicted elements, we aggregated the prediction 
scores using an aggregation metric appropriate to each individual 
predictor (for ABC we used ‘sum’, for correlation- or confidence-based 
predictors we used ‘max’). Similarly, if the predictor did not make a 
prediction for a particular tuple, it received an arbitrary quantitative 
score less than the least confident score for the predictor (for ABC we 
used 0, for other predictors we used 0, −1, 1 as appropriate). Supplemen-
tary Table 5 lists the experimental data merged with the predictions.

In the cases in which an enhancer–gene prediction method did not 
make cell-type-specific predictions, we evaluated the predictions 
against experimental data in all cell types (Extended Data Fig. 4c). We 
calculated the area under the precision–recall curve for predictors, 
or, if the predictor was defined at only one point, we multiplied the 
precision by the recall.

Similarity of ABC predictions among replicates and biosamples
We evaluated the reproducibility of ABC predictions derived from 
replicate epigenetic experiments. For each biosample for which 



independent biological replicate experiments for both ATAC-seq (or 
DNase-seq) or H3K27ac ChIP–seq were available, we generated ABC 
predictions for replicates 1 and 2 separately. To facilitate the reproduc-
ibility analysis, when computing the ABC scores for replicate 2, we used 
the candidate enhancer regions from replicate 1. (Using different sets 
of candidate regions can confound computing reproducibility. For 
example, the procedure to define candidate regions (peak calling, 
extending and merging) could call two separate approximately 500-bp 
regions in one replicate, but merge them into an around 1-kb region 
in the second replicate due to minor differences in the peak summits 
between replicates. In such a case the ABC score of the approximately 
1-kb region would be equal to the sum of the ABC scores of the 500-bp 
regions.)

We then evaluated the quantitative reproducibility of the predic-
tions (Extended Data Fig. 3c) and the number of predictions shared 
between replicates (Extended Data Fig. 3d). We observed that on aver-
age 85% of enhancer–gene predictions in one replicate are shared in 
the other replicate (at an ABC score threshold of 0.015). The fraction 
of shared connections between biological replicates increased as the 
ABC score cut-off increased: 95% of connections called in replicate 1 
at a higher confidence threshold of 0.02 were also called in replicate 
2 (at the default threshold of 0.015).

We also evaluated the extent to which the reproducibility of ABC pre-
dictions depends on the reproducibility of the underlying epigenetic 
data. For each biosample, we computed the correlation between the 
ATAC-Seq (or Dnase-Seq) or H3K27ac ChIP–seq signals in the candi-
date regions for that biosample. As expected, we observed that the 
fraction of shared ABC predictions between replicates increased as 
the correlation of the underlying epigenetic data increased (Extended 
Data Fig. 3e).

We used a similar calculation to compare ABC predictions across 
cell types and biosamples. For each pair of biosamples, we computed 
the fraction of predicted enhancer–gene connections shared between 
the pair. For this analysis, we used the shrunken ABC elements (around 
200 bp, see ‘Processing ABC predictions for variant overlaps’) and 
considered two connections to be shared if the elements overlapped 
by at least 1 bp and predicted to regulate the same gene.

Genetic data and fine-mapping
We downloaded summary statistics for IBD, Crohn’s disease and ulcera-
tive colitis (European ancestry only)51 from https://www.ibdgenetics.
org/downloads.html. We obtained fine-mapping posterior probabili-
ties and credible sets from a previously published study9 and analysed 
the top two conditionally independent credible sets for each locus. We 
also analysed variants from IBD GWAS loci that were not fine-mapped 
in this study51,52; for each such locus, we analysed all variants from the 
1000 Genomes Project in linkage disequilibrium with the lead variant 
(r2 > 0.2) and weighted each variant evenly (probability = 1/number of 
variants in linkage disequilibrium). We observed similar results for 
cell-type enrichments with or without including these non-fine-mapped 
sets. Throughout this text, analyses of ‘IBD’ signals are defined as signals 
associated with Crohn’s disease, ulcerative colitis or both.

We obtained fine-mapping results and summary statistics for 71 
other traits based on an unpublished analysis ( J.C.U., M. Kanai and 
H.K.F., unpublished data) that analysed data from the UK Biobank 
(application 31063; fine-mapping data are available at https://www.
finucanelab.org/data). In this analysis, up to 361,194 individuals of 
white British ancestry with available phenotypes and variants with 
INFO > 0.8, minor allele frequency > 0.01%, and Hardy–Weinberg 
equilibrium P > 1 × 10−10 were included in the GWAS. Covariates for the 
top 20 principal components, sex, age, age2, sex × age, sex × age2 and 
dilution factor, where applicable, were controlled for in the associa-
tion studies. Quantitative traits were inverse rank transformed and 
associations were estimated using BOLT-LMM53 for quantitative traits 
and SAIGE54 for binary traits. In-sample dosage linkage disequilibrium 

was computed using LDStore55, and phenotypic variance was com-
puted empirically. Fine-mapping was performed using the sum of single 
effects (SuSiE) method56, allowing for up to ten causal variants in each 
region. Prior variance and residual variance were estimated using the 
default options, and single effects (potential 95% credible sets) were 
pruned using the standard purity filter such that no pair of variants in 
a credible set could have r2 > 0.25. Regions were defined for each trait 
as ±1.5 Mb around the most significantly associated variant (with this 
window chosen based on the linkage disequilibrium structure in the 
human population), and overlapping regions were merged. Variants in 
the MHC region (chr. 6: 25–36 Mb) were excluded as were 95% credible 
sets containing variants with fewer than 100 minor allele counts. Coding 
(missense and predicted loss of function) variants were annotated using 
the variant effect predictor v.8557. For analysis with ABC, we excluded 
neuropsychiatric traits (for which we expect existing enhancer–gene 
maps will not include the appropriate cell types), traits with no entirely 
noncoding GWAS signals, and analysed only the variants that SuSiE 
assigned to belong to 95% credible sets (cs_id ! = -1).

For all traits, except where specified, we considered only the ‘non-
coding credible sets’—that is, those that did not contain any variant in a 
coding sequence or within 10 bp of a splice site annotated in the RefGene 
database (downloaded from UCSC Genome Browser on 24 June 2017)58. 
We note that predictions for all credible sets, both coding and noncod-
ing, are reported in Supplementary Table 10 to facilitate future analyses.

Defining enriched biosamples for each trait
For a given trait, we intersected variants with PIP ≥ 10% in noncoding 
credible sets with ABC enhancers (or other genomic annotations). For 
each biosample, we calculated a P value using a binomial test compar-
ing the fraction at which PIP ≥ 10% variants overlapped ABC enhancers 
with the fraction at which all common variants overlap ABC enhancers 
in that cell type. We calculated the latter using common variants in the 
1000 Genomes Projects as described in the ‘Stratified linkage disequi-
librium score regression’ section. For each trait, we defined a biosam-
ple as significantly enriched for that trait if the Bonferroni-corrected 
binomial P value was <0.001.

Comparison of enrichment of fine-mapped variants in enhancer 
regions
We compared the enrichment of fine-mapped variants in ABC enhanc-
ers and other enhancer definitions (Extended Data Fig. 5c). We analysed 
each of the previous studies from Fig. 1c reporting cell-type-specific 
enhancer–gene predictions as well as ChromHMM enhancers in blood 
cells downloaded from the BLUEPRINT Project59,60.

Stratified linkage disequilibrium score regression
We compared cell-type enrichments observed for fine-mapped vari-
ants to those observed with stratified linkage disequilibrium score 
regression (S-LDSC), which considers not only variants in genome-wide 
significant GWAS loci but also in sub-significant loci. To do so, we used 
S-LDSC to assess the enrichment of disease or trait heritability in ABC 
enhancers, considering all variants across the genome61. We analysed 
the ABC enhancer regions as defined above, and ran linkage disequi-
librium score regression using the baselineLD_v1.1 model using the 
1000G_EUR_Phase3_baseline file (downloaded from https://data.broa-
dinstitute.org/alkesgroup/LDSCORE/; defined as variants in the 1000 
Genomes Project with minor allele count >5 in 379 European samples). 
For comparison, we also analysed heritability enrichment in all other 
accessible regions for each trait. Specifically, we took the list of MACS2 
peaks (FDR < 0.05), removed those that overlapped ABC enhancers, 
and used these regions in S-LDSC.

Partitioning the genome into disjoint functional categories
To compare the frequency of variants occurring in ABC enhancers 
as opposed to other functional elements such as coding sequences 
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and splice sites (Extended Data Fig. 5f), we partitioned the genome 
into the following functional categories, using the RefGene database 
(downloaded from UCSC Genome Browser on 24 June 2017): coding 
sequences, 5′ and 3′ untranslated regions of protein-coding genes, 
splice sites (within 10 bp of a intron–exon junction of a protein-coding 
gene) of protein-coding genes, promoters (±250 bp from the gene TSS) 
of protein-coding genes, ABC enhancers in 131 biosamples, other acces-
sible regions in the same biosamples not called as ABC enhancers, and 
other intronic or intergenic regions. These categories may overlap; a 
disjoint annotation was created by assigning each nucleotide to the 
first of any overlapping categories in the order above (for example, 
nucleotides in both coding sequences and ABC enhancers were counted 
as coding sequences).

Overlap with H3K27ac QTLs
We downloaded H3K27ac data in monocytes and T cells from the Blue-
print Project and analysed allele-specific signals called by the WASP 
method as previously described62. We examined variants associated 
with allelic effects on H3K27ac where FDR < 0.05 and the variant was 
located within the associated peak. Of 52 fine-mapped IBD variants that 
overlapped ABC enhancers in any T cell or myeloid biosample, 10 vari-
ants had genome-wide significant allelic effects on H3K27ac ChIP–seq 
(3.6-fold enrichment versus other common variants that overlap ABC 
enhancers in T cells or myeloid cells). For example, we found significant 
allelic effects for rs11643024 in T cells (linked by ABC to suppressor of 
cytokine signalling 1 (SOCS1) located 93 kb away) and for rs9808651 
in monocytes (linked by ABC to ERG, located 32 kb away). This analysis 
indicates that some prioritized causal variants have allelic effects on 
enhancer activity.

Evaluating gene prediction methods
Curated genes for IBD. We analysed a previously curated list of IBD 
disease-associated genes14. To evaluate methods to connect noncod-
ing GWAS variants to genes, we analysed credible sets within 1 Mb of 
exactly 1 of these known genes that did not contain any protein-coding 
or splice site variants. In cases in which the gene was curated based on 
evidence from coding variation, we examined nearby conditionally 
independent noncoding signals, which may act via regulatory effects 
on the same gene that carries the coding variant.

Gene set enrichment for IBD predictions. As a second approach for 
comparing methods for identifying causal genes in IBD GWAS loci, we 
examined the extent to which the predicted genes were enriched for 
any gene sets. To do so, we downloaded curated and Gene Ontology 
gene sets from the Molecular Signatures Database63. We analysed all 
93 noncoding IBD credible sets. For each gene set, we tested whether 
it was enriched in the genes predicted by a given method, using the 
set of all genes within 1 Mb of IBD credible sets as the background, 
excluding HLA genes. For Extended Data Fig. 6b, we applied this 
approach to each of the methods described in Fig. 1c, selected the 
five gene sets with the highest enrichment that also had at least five 
identified genes and hypergeometric test P < 10−4. We plotted the 
cumulative density function (CDF) of the enrichments for each of 
the methods across the union of the top 5 gene sets identified by 
any of the methods.

Likely causal gene for blood traits. We identified genes carrying 
fine-mapped coding variants with high posterior probability (PIP ≥ 50%) 
associated with one of 10 blood cell traits (Baso, Eosino, Hb, LOY, Lym, 
MCH, Mono, Neutro, RBC, WBC), for which our ABC maps and other 
previous predictions include many of the relevant cell types. We used 
the Variant Effect Predictor57 to identify protein-truncating variants 
and damaging missense variants. Because of the large number of total 
genome-wide significant associations, many loci had multiple known 
genes within 1 Mb of the signal, which may or may not point to the same 

gene. Accordingly, we examined noncoding credible sets in which ex-
actly 1 gene within 1 Mb carried such a coding variant, and in which that 
gene was not more than the tenth closest gene to the variant with the 
highest PIP. To compute the enrichment for ABC and other methods 
in identifying such genes, we calculated: Enrichment = (true positive 
predictions/predictions)/(positive genes in the considered credible 
sets/all genes near the considered credible sets).

Comparisons to alternative variant-to-gene predictions
We compared ABC-Max to previously published results from alterna-
tive methods to link regulatory variants to disease-associated genes.

eQTL colocalization (Open Targets Platform). OpenTargets.org per-
formed colocalization analysis between IBD GWAS signals51,52 and eQTLs 
and protein QTLs (pQTLs) using coloc15. This analysis involved QTL 
datasets from a variety of sources including dozens of human tissues 
and many immune cell types, including from the eQTL Catalogue64. 
We downloaded colocalization results from ftp://ftp.ebi.ac.uk/pub/
databases/opentargets/genetics/190505/v2d_coloc/ on 1 February 
2020, and examined genes showing colocalization with an eQTL or 
pQTL in any biosample. We considered genes with coloc h4 probabil-
ity ≥ 0.9, and h4/h3 ratio ≥ 2. We used the coloc h4 probability to rank 
genes within each locus.

eQTL colocalization (JLIM). The colocalization of IBD GWAS signals 
with eQTLs in CD4+ T cells, CD14+ monocyte and lymphoblastoid cell 
lines was analysed previously18. We obtained their colocalized genes 
from table 2 of ref. 18. We used the JLIM P value to rank genes within 
each locus.

TWAS (S-PrediXcan and multiXcan). multiXcan was developed previ-
ously and was used to compare GTEx v.7 eQTLs to IBD summary statis-
tics20. We downloaded dataset 6 from ref. 20 and compared genes within 
each locus using the multiXcan P value.

Mendelian randomization (SMR). A Mendelian randomization-based 
approach (SMR) was previously used to connect IBD GWAS signals 
to effects on gene expression using eQTL data from 24 tissues21. We 
downloaded supplementary table 3 from ref. 21 and defined predicted 
genes in any tissue. We used the SMR FDR to rank genes within each 
locus.

COGS. PC-Hi-C data in many blood cell types were previously analysed 
to link GWAS variants to target genes22. We downloaded supplemen-
tary table 3 from ref. 22 (tab 2) and analysed genes linked with COGS 
scores ≥ 0.5.

In all cases, we combined predictions of disease-associated genes 
for IBD, ulcerative colitis and Crohn’s disease.

Comparisons to previous enhancer–gene predictions
We compared the ABC model to methods using alternative enhancer–
gene linking approaches. For each of the methods below, we down-
loaded previous predictions of enhancer–gene links, and assessed 
their ability to predict enhancer–gene regulation in CRISPR datasets 
(Extended Data Fig. 4) and their ability to identify IBD-associated genes 
(Fig. 1c and Extended Data Fig. 6b). For the latter analysis, we used 
the predictions from each method to overlap fine-mapped variants 
(PIP ≥ 10%) with enhancers in any cell type and assigned variants to 
the predicted gene(s).

PC-Hi-C gene predictions. We downloaded data S1 peak data from a 
previously published study22, representing PC-Hi-C data from 9 hae-
matopoietic cell types, and selected the promoter–distal region pairs 
with CHiCAGO score ≥ 5. For comparison to CRISPR data we used the 
CHiCAGO score as a quantitative predictor.

ftp://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/190505/v2d_coloc/
ftp://ftp.ebi.ac.uk/pub/databases/opentargets/genetics/190505/v2d_coloc/


ENCODE DNase correlation. Distal accessible elements with gene 
promoters were previously linked by looking at correlation of DNase 
I hypersensitivity across 125 cell and tissue types from ENCODE29. 
We downloaded these links from ftp://ftp.ebi.ac.uk/pub/databases/ 
ensembl/encode/integration_data_jan2011/byDataType/openchrom/
jan2011/dhs_gene_connectivity/genomewideCorrs_above0.7_promoter 
PlusMinus500kb_withGeneNames_32celltypeCategories.bed8.gz. GWAS  
loci with high-confidence fine-mapped variants that overlapped these 
regions were assigned to the linked gene(s).

eRNA–mRNA correlation (FANTOM5). The transcriptional activity of 
enhancers and TSSs was previously linked using the FANTOM5 CAGE 
expression atlas27. We downloaded these predictions from http:// 
enhancer.binf.ku.dk/presets/enhancer_tss_associations.bed.

Enhancer–gene correlation (ChromHMM-RNA). Gene expression 
was previously correlated with five active chromatin marks (H3K27ac, 
H3K9ac, H3K4me1, H3K4me2 and DNase I hypersensitivity) across 56 
biosamples, and these correlation links were then used to make predic-
tions for the predicted enhancers (regions with the ‘7Enh’ ChromHMM 
state) in 127 biosamples from the Roadmap Epigenome Atlas25,45. We 
downloaded these predictions from www.biolchem.ucla.edu/labs/
ernst/roadmaplinking and made predictions using the confidence score.

Enhancer–gene correlation in single-cell RNA and ATAC data. 
Single-cell ATAC-seq and RNA-sequencing data in peripheral blood 
and bone marrow mononuclear cells, CD34+ bone marrow cells and 
cancer cells from patients with leukaemia were previously analysed 
and the ATAC-seq signal in accessible elements was correlated with the 
expression of nearby genes26. We downloaded these predictions from 
https://github.com/GreenleafLab/MPAL-Single-Cell-2019 and used the 
correlation in samples from healthy individuals as the quantitative 
score. Cell-type-specific links were not reported.

EnhancerAtlas 2.0. EAGLE was previously used to predict enhancer–
gene interactions across a number of human tissues and cell lines30. 
The method calculates a score based on six features obtained from the 
information of enhancers and gene expression: correlation between 
enhancer activity and gene expression across cell types, gene expres-
sion level of target genes, genomic distance between an enhancer and 
its target gene, enhancer signal, average gene activity in the region 
between the enhancer and target gene, and enhancer–enhancer cor-
relation. We downloaded enhancer annotations for 104 cell types from 
http://www.enhanceratlas.org/.

Enhancer–gene correlation (DNase-seq and microarray gene ex-
pression). The DNase I signal and gene expression levels were previous-
ly correlated using data from 112 human samples representing 72 cell 
types to identify regulatory elements and to predict their targets28. We 
downloaded these predictions from http://dnase.genome.duke.edu/ 
and used the correlation as the quantitative score. Cell-type-specific 
links were not reported.

JEME (joint effect of multiple enhancers). Correlations between 
gene expression and various enhancer features (for example, DNase1 
and H3K4me1) were previously computed across multiple cell types to 
identify a set of putative enhancers24. Then, a sample-specific model is 
used to predict the enhancer gene connections in a given cell type. We 
downloaded the lasso-based JEME predictions in all ENCODE+Roadmap 
cell types from http://yiplab.cse.cuhk.edu.hk/jeme/. We used the JEME 
confidence score as a quantitative score.

TargetFinder. A model was previously generated to predict whether 
nearby enhancer–promoter pairs are located at anchors of Hi-C loops 

based on chromatin features31. We downloaded the TargetFinder predic-
tions from https://raw.githubusercontent.com/shwhalen/targetfinder/
master/paper/targetfinder/combined/output-epw/predictions-gbm.
csv. For each distal element–gene pair in our dataset, we searched to see 
if the element and gene TSS overlapped with an enhancer and promoter 
loop listed in this file. If so, we assigned the pair a score corresponding 
to the ‘prediction’ column from this file; otherwise the pair received 
a score of 0.

Comparisons to previous GWAS gene prediction methods
Finally, we compared our results to two previous GWAS gene predic-
tion methods.

MAGMA (Multi-marker Analysis of GenoMic Annotation). We applied 
MAGMA65 to the summary statistics for IBD51 using the 1000 Genomes 
Project reference panel to compute gene-level association statistics and 
gene–gene correlations using the SNP-wise mean gene analysis and a 
0-kb window around the gene body for mapping SNPs to genes. For 
each gene, MAGMA computes a gene P value from the mean χ2 statistic 
of SNPs in the gene body and its approximate sampling distribution. 
The gene P value is converted to a z-score using the probit function. 
The resulting z-score reflects the gene–trait association after correct-
ing for linkage disequilibrium among SNPs within the gene body. We 
assigned each IBD locus to the gene with the maximum positive z-score.

DEPICT (Data-driven Expression Prioritized Integration for Complex  
Traits). We applied DEPICT, which leverages pathway analysis and 
cell-type enrichment analysis from gene expression datasets to ana-
lyse genome-wide significant loci and prioritize causal genes23. We 
applied DEPICT to the summary statistics for each trait using the 1000 
Genomes Project reference panel and the 14,461 reconstituted gene sets 
from DEPICT to prioritize genes in genome-wide significant loci. First, 
we performed PLINK clumping with a P-value threshold of 5 × 10−8, r2 
threshold of 0.05, and distance threshold of 500 kb as recommended by 
the DEPICT software to identify associated variants. Loci are defined by 
taking all genes that reside within boundaries defined by the most distal 
variants in either direction with linkage disequilibrium of more than 0.5 
to the lead variant identified by PLINK clumping. DEPICT then scores 
genes by correlating their membership to reconstituted gene sets to 
those of other genes in genome-wide significant loci and performs a 
bias adjustment for the scores. Finally, to prioritize genes in each locus, 
we prioritized the single gene in each genome-wide significant locus 
with the most-significant P value.

Cell-type-specific gene set enrichments
We assessed whether the cell-type specificity of the ABC predictions 
for IBD variants could aid in identifying gene pathways enriched in IBD 
GWAS loci. To do so, we defined seven cell-type categories based on 
the biosamples available in our compendium and based on biological 
categories relevant to IBD: mononuclear phagocytes, B cells, T cells, 
other haematopoietic cells, fibroblasts, epithelial cells or tissues, and 
other cells or tissues. We then examined the extent to which the genes 
predicted by ABC in any cell type category, or in each individual cell type 
category, were enriched for gene sets from the Molecular Signatures 
Database63, as described above.

Assessing pleiotropy across 72 traits
We identified genes linked to multiple traits through different vari-
ants. To identify such genes, we identified genes that were predicted 
by ABC-Max to be linked to at least two different traits by two differ-
ent variants, where that gene was not linked to the same two traits by 
any single variant (that is, a gene linked to two traits by each of two 
variants would not fit this criteria). Because some of the 72 traits show 
high genetic correlation, we repeated these analyses in a subset of 36 
traits that were selected to show pairwise genetic correlation below 

ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/dhs_gene_connectivity/genomewideCorrs_above0.7_promoterPlusMinus500kb_withGeneNames_32celltypeCategories.bed8.gz
ftp://ftp.ebi.ac.uk/pub/databases/ensembl/encode/integration_data_jan2011/byDataType/openchrom/jan2011/dhs_gene_connectivity/genomewideCorrs_above0.7_promoterPlusMinus500kb_withGeneNames_32celltypeCategories.bed8.gz
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a threshold (|rg| < 0.2), plus IBD. We observed similar effects in this 
subset of the data, in which genes linked to multiple traits by different 
variants were more likely to have complex enhancer landscapes and 
large amounts of nearby noncoding genomic sequence.

Single-guide qPCR validation of e-PPIF
Two non-overlapping guides against PPIF TSS (GCGGCCGAGCGGC 
TTCCCGT and GAACCTGGGCAAGCCAATAA) and e-PPIF (GACTCAAGA 
TACCACCACCGG and GATGGCCAGTTTGGGAACGT), along with 
four non-targeting control guides (GAGATGAAAGCGCAGCTAGGG, 
GGGCGCTTACGCGCGGGCCG, GCGCGCGCTAACTGGCGCTA, GATGTG 
TTGTAACCTCCACT), were cloned into sgOpti as previously described12. 
We generated stable cell lines expressing each sgRNA by lentiviral 
transduction in 8 μg ml−1 polybrene by centrifugation at 1,200g for 
45 min with 200,000 CRISPRi THP1 cells in 24-well plates. After 24 h, we 
selected for transduction with 1 μg ml−1 puromycin (Gibco) for 72 h then 
maintained cells in 0.3 μg ml−1 puromycin. We plated sgRNA-expressing 
stable cell lines at 100,000 cells per ml in 1 μg ml−1 doxycycline and col-
lected cells 48 h later by lysing in buffer RLT (Qiagen). For each sgRNA, 
we generated three independent polyclonal cell populations through 
triplicate infections and treated each cell population with doxycycline 
twice, for a total of six biological replicates per sgRNA. We extracted 
RNA from 20,000 cells per experiment in buffer RLT (Qiagen) using 
Dynabeads MyOne Silane beads (Thermo Fisher), treated samples with 
TURBO DNase (Thermo Fisher), and cleaned again with Dynabeads 
MyOne Silane beads. We used AffinityScript reverse transcriptase  
(Agilent Technologies) and random nonamer primers to convert RNA 
to cDNA. We performed qPCR using SYBR Green I Master Mix (Roche) 
with primers for PPIF (AGAACTTCAGAGCCCTGTGC, CATTGTGGTTGG 
TGAAGTCG) and GAPDH (AGCACATCGCTCAGACAC, GCCCAATACGACCA 
AATCC) and calculated differences using the ΔΔCt method.

Assessing the effect of PPIF and e-PPIF on mitochondrial 
membrane potential
We synthesized a pool of 105 gRNAs including 40 negative control 
gRNAs, 9 gRNAs targeting the promoter of PPIF and 5 gRNAs targeting 
the PPIF enhancer (Agilent Technologies; see Supplementary Table 14), 
cloned these gRNAs into CROP-seq-opti (Addgene, 106280), and trans-
duced THP1 cells at a multiplicity of infection of 0.3 to ensure most cells 
contained 1 gRNA integration.

For untreated and LPS-stimulated conditions, we plated 10,000,000 
cells per replicate with 1 μg ml−1 doxycycline. After 44 h, we added 
1 μg ml−1 LPS and collected cells for staining 4 h later. For the PMA LPS 
condition, we plated 10,000,000 cells per replicate and added 1 μg ml−1 
doxycycline for 48 h. To differentiate into macrophage-like cells, we 
added fresh media with 20 ng ml−1 PMA and 1 μg ml−1 doxycycline for 
an additional 24 h, confirming that cells adhered to the tissue-culture 
plate. We washed out the PMA and added fresh medium with 1 μg ml−1 
doxycycline and incubated cells for 45 h to recover and further dif-
ferentiate cells. We then added 100 ng ml−1 LPS for 3 h, collected cells, 
washed 3 times with cold PBS and proceeded to mitochondrial staining.

We stained cells with MitoTracker Red (200 nM, Thermo Fisher, 
M7512) and MitoTracker Green (200 nM, Thermo Fisher, M7514) accord-
ing to the manufacturer’s protocol and sorted cells into 3 bins according 
to their ratio of MitoTracker Red (which stains mitochondria dependent 
on Δψm) to MitoTracker Green (which stains mitochondria independent 
of Δψm), excluding a small population of depolarized cells with very low 
Δψm (Extended Data Fig. 10f). We extracted genomic DNA and amplified 
and sequenced gRNAs from cells in each bin as previously described4.

We aligned and counted gRNAs in each bin as described above for 
FlowFISH experiments. For each gRNA, we summed counts across 
the two biological replicates. We then calculated the frequency fold 
change in Fig. 4d and Extended Data Fig. 10g by dividing gRNA reads 
per million by the mean value for negative-control gRNAs, and dividing 
values in each bin by the value for bin 3.

Data visualization
We developed a web application for interactively exploring ABC 
enhancer–gene connections, by extending HiGlass66, a flexible genome 
browser toolkit: https://flekschas.github.io/enhancer-gene-vis/ (Sup-
plementary Fig. 2). The application features three linked views: the 
enhancer view in the top left, the gene view in the bottom left and 
the DNA accessibility view on the right. The enhancer view supports 
pan-and-zoom for navigation and allows the user to focus on a gene 
or genomic region. The gene and DNA accessibility views are linked 
to the enhancer view and update automatically. Each view is interac-
tive, customizable and exportable. The design of the user interface 
and visualizations have been refined through several participatory 
exploration sessions.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Data for the immune cell line ATAC-seq and H3K27ac ChIP–seq analyses 
can be found in the NCBI GEO under accession number GSE155555. gRNA 
counts from CRISPRi screens can be found in Supplementary Tables 3, 
14. UK Biobank fine-mapping data for 71 traits are available from https://
www.finucanelab.org/data. ABC predictions in 131 biosamples can be 
found at https://www.engreitzlab.org/abc/.

Code availability
The ABC model is available on GitHub (https://github.com/broadin-
stitute/ABC-Enhancer-Gene-Prediction). This is the codebase used to 
generate the ABC predictions for this manuscript, and can be used to 
run the ABC model on new biosamples. ABC-Max and paper-specific 
analyses can be found on GitHub (https://github.com/EngreitzLab/
ABC-GWAS-Paper). This repository implements the ABC-Max pipeline 
and can be used to reproduce specific analyses in this study.
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Extended Data Fig. 1 | ABC maps connect fine-mapped variants to 
enhancers, genes and cell types. a, Overview of approach. b, ABC predictions 
connect two IBD GWAS signals to IL10. Signal tracks show DNase-seq or 
ATAC-seq (based on availability of data). Red arrows represent ABC predictions 
connecting variants to IL10. Dashed line shows the TSS. Grey bars highlight 

fine-mapped variants that overlap with ABC enhancers in at least one cell type. 
Credible set 1 contains two variants, both of which overlap with enhancers 
predicted to regulate IL10 in various cell types. Credible set 2 contains four 
variants, one of which overlaps with an enhancer predicted to regulate IL10 in 
monocytes stimulated with LPS.
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Properties of ABC predictions. a, Cumulative fraction 
of the number of ABC enhancers within each biosample (median = 17,605).  
b, Cumulative fraction of the number of enhancer–gene connections within 
each biosample (median = 48,441). c, Cumulative fractions of the number of 
enhancers predicted to regulate each gene across all biosamples (black line; 
median = 2, mean = 2.8) and the mean number of enhancers predicted to 
regulate each gene within each biosample (red line; median = 2.8). d, 
Cumulative fractions of the number of genes regulated by each ABC enhancer 
across all genes and all biosamples (black line; median = 1, mean = 2.7) and the 
mean number of genes regulated by each ABC enhancer within each biosample 
(red line; median = 2.7). e, Cumulative fractions of the genomic distances 
between the enhancer and the gene for each predicted enhancer–gene 
connection across all genes and all biosamples (black line; median = 62,929 bp) 
and the median genomic distance between each enhancer–gene connection 

within each biosample (red line; median = 62,782 bp). f, Number of ABC 
enhancers predicted in 131 biosamples stratified by whether the epigenomic 
data for the biosample is derived from one or multiple donors. We do not 
observe significant differences between these distributions (two-sided 
Wilcoxon rank-sum test, P = 0.10). Box plot displays median, 25th and 75th 
percentiles. g, Summary of ABC predictions in K562. Plot includes 122,410 non-
promoter Dnase hypersensitive sites (DHS elements) in K562. Each element is 
classified as an ‘ABC enhancer’ if the element is predicted to regulate at least 
one gene, or ‘other accessible region’ otherwise. The x axis represents the 
distance from the element to the closest TSS of an expressed gene. The y axis 
represents the percentile bin of the activity of the element (in terms of DHS and 
H3K27ac signals) among these 122,410 elements. The colouring of the heat map 
represents the fraction of elements in the corresponding distance and activity 
bins that are ABC enhancers.
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Extended Data Fig. 3 | Distinctness and reproducibility of ABC predictions. 
a, Distinctness of predictions across biosamples. Biosample versus biosample 
(131 × 131) heat map. The colour of the (i,j) pixel in the heat map represents the 
fraction of enhancer–gene connections (‘E-G connections’—which are defined 
to be an element–gene pair for which the ABC score is greater than 0.015) in 
biosample i that have a corresponding overlapping prediction in biosample j. 
Two connections are considered overlapping if the predicted genes are the 
same and the enhancer elements overlap. Rows and columns are ordered by 
hierarchical clustering. A median of 19% (median of row medians) of enhancer–
gene connections are shared across distinct biosamples. b, Distribution of 
shared connections by relatedness of samples. Distribution of the fraction of 
shared connections in a stratified by the relatedness of the samples. Each pair 
of biosamples is classified as: ‘same cell line’, which indicates the same cell line 
under different perturbation conditions or from different compendia; ‘same 
primary tissue type’, which indicates the same tissue type from different 
compendia; ‘same lineage’, which indicates samples from the same lineage 
classification as in a; ‘other’ refers to all other pairs of samples. c, Quantitative 
reproducibility of ABC predictions. ABC scores computed using independent 
biological replicates of epigenomic data (ATAC-seq and H3K27ac ChIP–seq) 

from the BJAB cell line. Each data point is an element–gene pair. d, Fraction of 
shared enhancer–gene connections between replicates increases as ABC score 
cut-off increases. x axis, cut-off on the ABC score; y axis, for a given cut-off of 
the ABC score, the fraction of element–gene pairs with an ABC score greater 
than the cut-off in sample 1 that have an ABC score > 0.015 in sample 2. Each 
biosample is classified as: ‘multiple donors’, which indicates that the epigenetic 
data for this biosample is derived from different donors, or ‘single donor’, 
which indicates that the epigenetic data for this biosample is derived from the 
same donor or cell line. For ‘single donor’ biosamples, replicates represent 
independent epigenomic experiments from the same donor or cell line; for 
‘multiple donor’ biosamples, replicates represent epigenomic experiments 
from different donors. Separate curves are computed for each biosample and 
then the average across biosamples is plotted. e, Fraction of shared enhancer–
gene connections increases as reproducibility of underlying epigenetic data 
increases. Each data point represents a biosample. x axis, geometric mean of 
correlation of ATAC-seq (or DNase-seq) and H3K27ac ChIP–seq signal in 
candidate regions computed using replicate epigenetic experiments. y axis, 
fraction of enhancer–gene connections with ABC score > 0.015 in replicate 1 
that also have ABC score > 0.015 in replicate 2. Colours as in d.
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Extended Data Fig. 4 | ABC performs well at identifying regulatory 
enhancer–gene connections in CRISPR datasets. a, Comparison of 
enhancer–gene predictors to experimental CRISPR data in K562 cells. Each of 
these predictors makes K562-specific predictions. Curves represent 
continuous predictors. Dots represent binary predictors as follows: E, each 
gene is predicted to be regulated only by the element closest to its TSS; G, each 
element is predicted to regulate only the nearest (to TSS) expressed gene; T, 
TargetFinder method31; L, elements and genes at opposite ends of HiCCUPS 
loops derived from Hi-C data are predicted as a connection67; D, an element–
gene pair is a predicted positive if and only if the element and the gene are 
contained within the same contact domain67. The red dot on ABC score curve: 
precision and recall achieved using a threshold on the ABC score of 0.015. 
Dashed black line, rate of experimental positives. b, Comparison of ABC 
predictions using a binary distance threshold to experimental CRISPR data in 
K562 cells. ‘Activity (<X kb)’ represents a model in which the score for an 
element–gene pair is the activity of the element (in terms of DHS and H3K27ac 
signals) multiplied by a binary indicator (1 if the distance is <X kb, and 0 
otherwise). The ABC model using quantitative Hi-C outperforms the models 
based on binary thresholds indicating that Hi-C data are a critical component 
of the ABC model. c, Comparison of ABC and other enhancer–gene predictors 
in full CRISPR dataset. Comparison of enhancer–gene predictors to 
experimental CRISPR data in K562, GM12878, NCCIT, BJAB (with or without 
stimulation), Jurkat (with or without stimulation), THP1 (with or without 
stimulation) cells and primary hepatocytes. For ABC, we used the predictions 
in the cell type corresponding to the CRISPR experiments. Because ABC is the 
only method that makes predictions in all of these cell types, we used this plot 
to compare ABC to other methods that make predictions without cell-type 
information. We consider each enhancer–gene pair predicted by these 
methods to be a prediction in all cell types. d, Comparison of ABC and Ernst-
Roadmap predictions25. Comparison of enhancer–gene predictors to 
experimental CRISPR data in K562, GM12878 and unstimulated Jurkat, BJAB 
and THP1 cells. The red line represents a comparison of ABC scores computed 
using epigenetic data from the same cell type as the CRISPR experiment was 
performed. To compare Roadmap predictions to CRISPR data, we made cell-
type substitutions because the Roadmap predictions did not include BJAB, 

Jurkat and THP1 cells: for BJAB CRISPR data we compared to predictions in the 
Roadmap B cell sample (E032); for THP1 data we used the Roadmap monocyte 
sample (E124); and for Jurkat data we used the Roadmap T cell sample (E034). To 
directly compare the performance of ABC and Ernst-Roadmap methods in 
matched cell types, we also calculated ABC performance using the same cell 
type substitutions (green line)—for example, CRISPR data in BJAB cells were 
compared to ABC scores computed using epigenetic data from the Roadmap 
B cell sample (E032). e, Comparison of ABC to PC-Hi-C. Comparison of 
enhancer–gene predictors to experimental CRISPR data in K562 and 
unstimulated BJAB, THP1 and Jurkat cells. The red line represents a comparison 
of ABC scores computed using epigenetic data from the same cell type as the 
CRISPR experiment was performed. To compare PC-Hi-C CHiCAGO predictions 
(purple line) to CRISPR data, we made cell-type substitutions because PC-HiC 
data are not available for K562, BJAB, Jurkat and THP1 cells: for K562 CRISPR 
data we compared to CHiCAGO scores in erythroblasts; for BJAB CRISPR data 
we compared to total B cells; for THP1 data we compared to monocytes; and for 
Jurkat data we compared to activated CD4+ T cells. To directly compare the 
performance of ABC and PC-HiC methods in matched cell types, we also 
calculated ABC performance using the same cell-type substitutions (green 
lines). The solid green line represents ABC scores for which the contact 
component is derived from the average Hi-C dataset used throughout this 
study. The dashed green line represents ABC scores for which the contact 
component is derived from the raw counts in PC-HiC experiments (see 
Methods). f–h, Comparison of ABC to PC-Hi-C stratified by distance. These 
panels represent the comparison of the same predictors as in e while stratifying 
the experimental dataset in e based on the distance between the tested 
element and gene TSS. Of the 4,078 element–gene connections in the 
experimental dataset, 398 are at a distance of <50 kb (of which 94 are 
experimental positives, 24% positive rate), 1,102 are between 50 kb and 200 kb 
(20 positives, 2% positive rate) and 2,578 are at a distance of >200 kb (10 
positives, 0.4% positive rate). Given the differences in positive rates between 
the stratifications (indicated by dashed black lines), it is appropriate to 
compare precision–recall curves within each stratification, but it is not 
appropriate to compare the precision–recall curve of the same predictor 
across stratifications.
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Extended Data Fig. 5 | Fine-mapped GWAS variants are highly enriched in 
ABC enhancers. a, Number of credible sets analysed for 72 diseases and 
complex traits. Light grey shows the total number of fine-mapped credible 
sets. Dark grey shows the number of such credible sets with no coding or splice 
site variants, and at least one variant with PIP ≥ 10%. Red shows the number of 
credible sets for which ABC-Max makes a prediction (that is, a variant with 
PIP ≥ 10% overlaps an ABC enhancer in a biosample that shows global 
enrichment for that trait). See Supplementary Table 7 for trait descriptions and 
additional statistics. b, Enrichment of fine-mapped variants (PIP ≥ 10%) 
associated with four blood cell traits in ABC enhancers in the corresponding 
blood cell types or progenitors. Enrichment = (fraction of fine-mapped 
variants/fraction of all common variants) overlapping regions in each cell type. 
Numbers of biosamples in each category are shown in parentheses.  
c, Enrichment of fine-mapped IBD variants (PIP ≥ 10%) in ABC enhancers and 
other sets of previously defined enhancers. Cumulative density function shows 
distribution across cell types. d, Enrichment of fine-mapped variants 
(PIP ≥ 10%) in ABC enhancers resized in different ways. Regions of at least 
500-bp (blue line) are used to count reads, as defined previously. Regions were 

then shrunk by 150-bp on each side (minimum size of element = 200 bp) for 
overlapping with variants. Grey lines show alternative sizes, which do not 
appear to notably affect enrichments of fine-mapped variants. e, Percentage of 
noncoding variants across all traits that overlap an ABC enhancer in an 
enriched biosample, as a function of the number of cell types analysed. 
Biosamples (131) were grouped into 74 cell types or tissues; and analysed in 
random order. Black line, mean across 20 random orderings. Dashed grey lines, 
95% confidence intervals. f, Fraction of variants or heritability for all 72 traits 
contained in different categories of genomic regions: coding sequences (CDS), 
untranslated regions (UTR), splice sites (within 10 bp of an intron–exon 
junction of a protein-coding gene), promoters (±250 bp from the gene TSS), 
ABC enhancers in 131 biosamples, other accessible regions not called as ABC 
enhancers, and other intronic or intergenic regions. In cases in which a variant 
overlaps more than one category, the variant was assigned to the first category 
that it overlapped (that is, variants in coding sequences were not also counted 
in the ABC category; Methods). Left, all common variants or heritability (h2, as 
estimated by S-LDSC in inverse-variance-weighted meta-analysis across 72 
traits). Right, fraction of variants above a threshold on the fine-mapping PIP.
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Extended Data Fig. 6 | ABC enhancer maps connect GWAS variants to 
known genes. a, ABC predictions for IBD credible sets linked to IL10. Heat map 
shows ABC scores for each gene within 1 Mb in selected primary immune cell 
types. Credible set 1 is linked by ABC to multiple genes, but IL10 (red) has the 
strongest ABC score in any cell type. b, Cumulative density plot showing 
enrichment for gene sets in MSigDB among the genes prioritized by each 
method63. Methods are coloured and categories as in Fig. 1c. For each method, 
we first identified the top 5 most enriched significant gene sets in the 
predictions of that method (82 gene sets total). Then, we calculated the levels 
of enrichment of all 82 gene sets in the predictions of each method.  
c, Comparison of predictions for the 37 IBD credible sets near known genes. 
Fraction predictions shared = (credible sets for which both methods predict 
the same gene)/(credible sets for which both methods make a prediction). For 
example, 16 credible sets have predictions from both ABC-Max and 
ChromHMM-RNA correlation, and the two methods predict the same gene in 14 

out of 16 credible sets. d, Enrichment of likely causal genes for 10 blood traits 
(defined by common coding variants) for various prediction methods. 
Enrichment reflects the number of correctly predicted genes identified 
divided by the baseline of choosing random genes in each of the loci with a 
prediction. e, Precision–recall plot for identifying known IBD-associated 
genes, comparing additional variations on the prediction methods (related to 
Fig. 1c). For ABC, we compared ABC-Max (assigning each credible set to the 
gene with the maximum ABC score, red circle), ABC-Max excluding all immune 
and gut tissue biosamples (orange circle) and ABC-All (assigning each credible 
set to all genes linked to enhancers, red triangle). For other methods that 
provided quantitative scores, we similarly compared choosing the gene with 
the best score per locus (circles) with choosing all genes above the global 
thresholds previously reported in each study (triangles). In most cases, the best 
gene per locus outperformed using a global threshold.
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Extended Data Fig. 8 | Cell-type specificity of ABC predictions. a, A 
comparison of the number of biosample groups (cell type lineages) in which 
the gene promoter is active versus the number of categories in which a variant 
is predicted to regulate the gene by ABC-Max. b, Heat map of ABC scores for 
predicted IBD-associated genes in resting and stimulated mononuclear 
phagocytes (from epigenomic data in monocytes68 and dendritic cells69). IRF4 
and PDGFB (bold) are two examples for which ABC predictions are specific to a 
particular stimulated state (+LPS) and are not observed in unstimulated states. 
c, Enrichment for top gene sets identified when performing enrichment 
analysis among the 23 IBD-associated genes predicted by ABC-Max in 
mononuclear phagocytes (dark grey), versus when performing the same 

analysis among the 43 IBD-associated genes predicted in any biosample (light 
grey). The enrichment for a given gene is calculated as the ratio of the 
frequency at which ABC-predicted genes belong to the gene set, compared to 
the frequency at which all genes within 1 Mb of these loci belong to the gene set 
(Methods). d, A variant in an intron of ANKRD55 is predicted by the ABC model 
to regulate IL6ST in thymus. The grey bar highlights the variant overlapping the 
predicted ABC enhancer. Vertical dotted lines represent TSSs. The red arc at 
the top denotes the ABC-Max prediction. The red arc at the bottom denotes 
that CRISPRi of the highlighted enhancer significantly affects the expression of 
IL6ST only in Jurkat cells.
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Extended Data Fig. 9 | Genes linked by ABC to different traits by different 
variants. a, ABC links IKZF1 to 2 traits by variants in 18 credible sets. Red boxes 
mark enhancers predicted to regulate IKZF1. The thick black line marks the 
IKZF1 TSS. Black dots mark fine-mapped noncoding variants (PIP ≥ 10%) 
associated with one or more traits linked to IKZF1 by ABC-Max. b, Genes linked 
to different traits via different variants have more complex enhancer 
landscapes. Cumulative distribution plots show the number of ABC enhancer–
gene connections in all 131 biosamples (left) and the distance between the TSSs 
of the two closest neighbouring genes on either side of a gene, for each gene 
linked by ABC-Max to zero traits, one trait, or two or more traits through 
different variants (right). c, The complexity of the enhancer landscape of a gene 

is correlated with the odds of the gene being linked to multiple GWAS traits. 
The x axis shows the Wald odds ratio that a gene is connected to multiple GWAS 
traits, comparing genes in the top decile versus all other deciles of the 
corresponding enhancer complexity metric. The three enhancer complexity 
metrics are defined for each gene: the total number of enhancers linked to the 
gene by ABC in any biosample, the number of enhancers linked to a gene per 
biosample in which the promoter of the gene is active, and the genomic 
distance to the closest neighbouring TSS on either side of the gene. Dot, mean 
of the top decile genes (n = 1,838) versus all others (n = 16,550). Whiskers, 95% 
confidence intervals.
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Enhancers and variants connected to PPIF. a, ABC 
predictions for variants near PPIF. Black dots represent either fine-mapped 
variants (PIP ≥ 10%) for IBD and UK Biobank traits, or lead variants for any 
phenotype from the GWAS Catalog16 (the latter to show the approximate 
locations of signals for traits for which fine-mapping is not yet available). The 
‘IBD’ label points to rs1250566. The ‘MS’ (multiple sclerosis) label points to 
rs1250568 (fine-mapped in ref. 2). Red boxes mark enhancers predicted to 
regulate PPIF. Thick back lines mark TSSs. Thin black lines mark selected 
variants. b, CRISPRi-FlowFISH data for PPIF in seven immune cell lines and 
stimulated states. Red boxes mark distal enhancers (CRISPR gRNAs lead to a 
significant decrease in the expression of PPIF). Dark grey box marks the gene 
body of PPIF, for which CRISPRi cannot accurately assess the effects of putative 
regulatory elements4. c, Chromatin accessibility in 5-kb regions around the 
PPIF enhancer (e-PPIF). Signal tracks show ATAC-seq (for THP1 and BJAB) or 
DNase-seq (for GM12878 and Jurkat) data in reads per million. Arrows show the 
locations of variants associated with multiple sclerosis and lymphocyte count 
(Lym, rs1250568) and with IBD (rs1250566), which overlap with enhancers that 
regulate PPIF in distinct sets of cell types. d, Effect of each tested gRNA on PPIF 
expression, as measured by CRISPRi-FlowFISH (Methods). Dots, gRNAs for 
which the effect estimate is >0% (black) or <0% (red). Red bars show regions for 
which gRNAs have a significant effect on gene expression (FDR < 0.05), 
compared by a two-sided t-test to negative control gRNAs. e, Effects of eight 
individual gRNAs on PPIF expression in THP1 cells, as measured by CRISPRi and 
qPCR (Methods). PPIF expression is normalized to expression of GAPDH and to 

cells expressing negative control, non-targeting gRNAs (Ctrl). Error bars, 95% 
confidence intervals of the mean (n = 6 replicates per gRNA). f, Schema of 
pooled CRISPRi screen to examine the effects of PPIF and e-PPIF on 
mitochondrial membrane potential (Δψm). Cells expressing a pool of gRNAs 
were stained with MitoTracker Red and MitoTracker Green and sorted into 
three bins of increasing red:green ratios. gRNAs from cells in each bin were 
PCR-amplified, sequenced and counted. g, Effects of CRISPRi gRNAs (targeting 
e-PPIF, PPIF promoter or negative controls) on Δψm, quantified as the frequency 
of THP1 cells carrying those gRNAs with low or medium versus high 
MitoTracker Red signal (corresponding to bins 1, 2 and 3, respectively; superset 
of data in Fig. 4d). We tested THP1 cells in unstimulated conditions, stimulated 
with LPS, and differentiated with PMA and stimulated with LPS (Methods). 
Error bars, 95% confidence intervals for the mean of 40, 9, and 5 gRNAs for 
control, PPIF and e-PPIF, respectively. Two-sided Wilcoxon rank-sum test versus 
control; *P = 0.0163, **P = 0.00426, ***P = 0.000356. h, Ratios of MitoTracker 
Red (mitochondrial membrane potential) to MitoTracker Green (mitochondrial 
mass) signal in THP1 cells at baseline, stimulated with LPS and differentiated 
into macrophages with PMA and stimulated with LPS in biological duplicate 
(from left to right, n = 8,044, 99,683, 99,982, 99,968, 99,886 and 99,878; 
replicates were cultured, stimulated, stained and flow-sorted independently). 
Box represents median and interquartile range; whiskers show minimum and 
maximum. Stimulation with either LPS alone or both PMA and LPS leads to a 
reduction in red:green signal, indicating a reduction in mitochondrial 
membrane potential normalized to mitochondrial mass.
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GSM4706090  THP-ctrl-2_H3K27ac 
GSM4706091  THP1_ctrl_1-Tag-30_ATAC 
GSM4706092  THP1_ctrl_2-Tag-30_ATAC 
GSM4706093  THP-stim-1_H3K27ac 
GSM4706094  THP-stim-2_H3K27ac 
GSM4706095  THP_stim_1-Tag-30_ATAC 
GSM4706096  THP_stim_2-Tag-30_ATAC 
GSM4706097  THP1pmaLPS_K27ac_1_0h_H3K27ac 
GSM4706098  THP1pmaLPS_K27ac_2_0h_H3K27ac 
GSM4706099  THP_pmaLPS_ATAC_1_0h_ATAC 
GSM4706100  THP_pmaLPS_ATAC_2_0h_ATAC 
GSM4706101  THP1pmaLPS_K27ac_19_120h_H3K27ac 
GSM4706102  THP1pmaLPS_K27ac_20_120h_H3K27ac 
GSM4706103  THP_pmaLPS_ATAC_19_120h_ATAC 
GSM4706104  THP_pmaLPS_ATAC_20_120h_ATAC 
GSM4706105  THP1pmaLPS_K27ac_10_12h_H3K27ac 
GSM4706106  THP1pmaLPS_K27ac_9_12h_H3K27ac 
GSM4706107  THP_pmaLPS_ATAC_10_12h_ATAC 
GSM4706108  THP_pmaLPS_ATAC_9_12h_ATAC 
GSM4706109  THP1pmaLPS_K27ac_3_1h_H3K27ac 
GSM4706110  THP1pmaLPS_K27ac_4_1h_H3K27ac 
GSM4706111  THP_pmaLPS_ATAC_4_1h_ATAC 
GSM4706112  THP1pmaLPS_K27ac_11_24h_H3K27ac 
GSM4706113  THP1pmaLPS_K27ac_12_24h_H3K27ac 
GSM4706114  THP_pmaLPS_ATAC_11_24h_ATAC 
GSM4706115  THP_pmaLPS_ATAC_12_24h_ATAC 
GSM4706116  THP1pmaLPS_K27ac_5_2h_H3K27ac 
GSM4706117  THP1pmaLPS_K27ac_6_2h_H3K27ac 
GSM4706118  THP_pmaLPS_ATAC_5_2h_ATAC 
GSM4706119  THP_pmaLPS_ATAC_6_2h_ATAC 
GSM4706120  THP1pmaLPS_K27ac_13_48h_H3K27ac 
GSM4706121  THP1pmaLPS_K27ac_14_48h_H3K27ac 
GSM4706122  THP_pmaLPS_ATAC_13_48h_ATAC 
GSM4706123  THP_pmaLPS_ATAC_14_48h_ATAC 
GSM4706124  THP1pmaLPS_K27ac_7_6h_H3K27ac 
GSM4706125  THP1pmaLPS_K27ac_8_6h_H3K27ac 
GSM4706126  THP_pmaLPS_ATAC_7_6h_ATAC 
GSM4706127  THP1pmaLPS_K27ac_15_72h_H3K27ac 
GSM4706128  THP1pmaLPS_K27ac_16_72h_H3K27ac 
GSM4706129  THP_pmaLPS_ATAC_15_72h_ATAC 
GSM4706130  THP1pmaLPS_K27ac_17_96h_H3K27ac 
GSM4706131  THP1pmaLPS_K27ac_18_96h_H3K27ac 
GSM4706132  THP_pmaLPS_ATAC_17_96h_ATAC 
GSM4706133  U937-ctrl-1_H3K27ac 
GSM4706134  U937-ctrl-2_H3K27ac 
GSM4706135  U937_ctrl_1-Tag-30_ATAC 
GSM4706136  U937_ctrl_2-Tag-30_ATAC 
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GSM4706137  U937-stim-1_H3K27ac 
GSM4706138  U937-stim-2_H3K27ac 
GSM4706139  U937_stim_1-Tag-30_ATAC 
GSM4706140  U937_stim_2-Tag-30_ATAC

Genome browser session 
(e.g. UCSC)

http://genome.ucsc.edu/cgi-bin/hgTracks?hubUrl=ftp://ftp.broadinstitute.org/outgoing/lincRNA/Nasser2020/
UCSCHub.txt&genome=hg19

Methodology

Replicates Biological duplicates

Sequencing depth ChIP-Seq experiments were sequenced using 75bp single end reads to a depth of >30 million reads per sample. ATAC-Seq 
experiments were sequenced using 50bp paired end reads to a depth of >20 million reads per sample

Antibodies H3K27ac monoclonal antibody (Cat #39685, Active Motif)

Peak calling parameters The 'callpeak' function in MACS2 was used to call peaks for both ChIP-Seq and ATAC-Seq experiments using default parameters. 

Data quality Data quality was assessed by computing the aggregated TSS enrichment of each sample. For ATAC-Seq samples there were 60,000 - 
90,000 peaks called at an FDR of 5%. For ChIP-Seq samples there were 25,000 - 60,000 peaks called at an FDR of 5%. 

Software We aligned reads using BWA (v0.7.17), removed PCR duplicates using the MarkDuplicates function from Picard (v1.731, http://
picard.sourceforge.net), and filtered to uniquely aligning reads using samtools (MAPQ >= 30, https://github.com/samtools/samtools)

Flow Cytometry

Plots
Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation After stimulation and incubation of THP1 cells we harvested cells, resuspended in FACS buffer (0.4% BSA, PBS) and proceeded 
to mitochondrial staining (see methods). 

Instrument MA900 Multi-Application Cell Sorter

Software FlowJo v10.7

Cell population abundance For THP1 mitochondrial CRISPR screen experiments, unfragmented cells were gated using FSC/SSC and cells were split into 
three populations based on mitochondrial membrane potential (ratio of MitoTracker Red to MitoTracker Green, top 15%, 
middle 25%, bottom 15%), excluding a population with depolarized mitochondria (Figure S8). 

Gating strategy See previous

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.


