613 research outputs found

    LHCD and ICRF heating experiments in H-mode plasmas on EAST

    Get PDF
    An ICRF system with power up to 6.0 MW and a LHCD system up to 4MW have been applied for heating and current drive experiments on EAST. Intensive lithium wall coating was intensively used to reduce particle recycling and Hydrogen concentration in Deuterium plasma, which is needed for effective ICRF and LHCD power absorption in high density plasmas. Significant progress has been made with ICRF heating and LHW current drive for realizing the H-mode plasma operation in EAST. In 2010, H-mode was generated and sustained by LHCD alone, where lithium coating and gas puffing launcher mouth were applied to improve the LHCD power coupling and penetration into the core plasmas at high density of H-modes. During the last two experimental campaigns, ICRF Heating experiments were carried out at the fixed frequency of 27MHz, achieving effective ions and electrons heating with the H Minority Heating (H-MH) mode, where electrons are predominantly heated by collisions with high energy minority ions. The H-MH mode gave the best plasma performance, and realized H-mode alone in 2012. Combination of ICRF and LHW power injection generated the H-mode plasmas with various ELMy characteristics. The first successful application of the ICRF Heating in the D (He3) plasma was also achieved. The progress on ICRF heating, LHCD experiments and their application in achieving H-mode operation from last two years will be discussed in this report

    CD4 T lymphocyte autophagy is upregulated in the salivary glands of primary Sjögren’s syndrome patients and correlates with focus score and disease activity

    Get PDF
    Background: Primary Sjögren’s syndrome (pSS) is a common chronic autoimmune disease characterized by lymphocytic infiltration of exocrine glands and peripheral lymphocyte perturbation. In the current study, we aimed to investigate the possible pathogenic implication of autophagy in T lymphocytes in patients with pSS. Methods: Thirty consecutive pSS patients were recruited together with 20 patients affected by sicca syndrome a nd/or chronic sialoadenitis and 30 healthy controls. Disease activity and damage were evaluated according to SS disease activity index, EULAR SS disease activity index, and SS disease damage index. T lymphocytes were analyzed for the expression of autophagy-specific markers by biochemical, molecular, and histological assays in peripheral blood and labial gland biopsies. Serum interleukin (IL)-23 and IL-21 levels were quantified by enzyme-linked immunosorbent assay. Results: Our study provides evidence for the first time that autophagy is upregulated in CD4+ T lymphocyte salivary glands from pSS patients. Furthermore, a statistically significant correlation was detected between lymphocyte autophagy levels, disease activity, and damage indexes. We also found a positive correlation between autophagy enhancement and the increased salivary gland expression of IL-21 and IL-23, providing a further link between innate and adaptive immune responses in pSS. Conclusions: These findings suggest that CD4+ T lymphocyte autophagy could play a key role in pSS pathogenesis. Additionally, our data highlight the potential exploitation of T cell autophagy as a biomarker of disease activity and provide new ground to verify the therapeutic implications of autophagy as an innovative drug target in pSS

    NF-κB Induced the Donor Liver Cold Preservation Related Acute Lung Injury in Rat Liver Transplantation Model

    Get PDF
    We have observed at our clinical work that acute lung injury (ALI) often occurs in patients transplanted with donor livers persevered for long time. So, we conducted this study to investigate the influence of cold preservation time (CPT) of donor liver on ALI induced by liver transplantation (LT), and further study the role of nuclear factor-κB (NF-κB) in the process.Wistar rats were used as donors and recipients to establish orthotopic rat liver transplantation models. Donor livers were preserved at 4°C for different lengths of time. The effect of NF-κB inhibitor, ammonium pyrrolidinedithiocarbamate (PDTC), on ALI was detected. All samples were harvested after 3 h reperfusion. The severity of liver injury was evaluated first. The expressions of tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) in liver tissue and liver outflow serum were measured respectively. The severity indexes of ALI, the activity of NF-κB and inhibitor-κBα (I-κBα) in lung/liver were measured accordingly.With the prolonged liver CPT, the liver damage associated indexes and ALI-related indexes all increased significantly. TNF-α and IL-1β in liver outflow serum increased accordingly, and the activity of NF-κB in liver/lung increased correspondingly. All these ALI-associated indexes could be partially reversed by the use of PDTC.Extended CPT aggravates the damage of donor liver and induces the expressions of TNF-α and IL-1β in liver. These inflammatory factors migrate to lung via liver outflow blood and activate NF-κB in lung, inducing ALI finally. NF-κB may play a critical role in LT-related ALI. Patients with or at risk of ALI may benefit from acute anti-inflammatory treatment with PDTC

    Xenopus as a Model System for the Study of GOLPH2/GP73 Function: Xenopus golph2 Is Required for Pronephros Development

    Get PDF
    GOLPH2 is a highly conserved protein. It is upregulated in a number of tumors and is being considered as an emerging biomarker for related diseases. However, the function of GOLPH2 remains unknown. The Xenopus model is used to study the function of human proteins. We describe the isolation and characterization of Xenopus golph2, which dimerizes and localizes to the Golgi in a manner similar to human GOLPH2. Xenopus golph2 is expressed in the pronephros during early development. The morpholino-mediated knockdown of golph2 results in edema formation. Additionally, Nephrin expression is enhanced in the glomus, and the expression of pronephric marker genes, such as atp1b1, ClC-K, NKCC2, and NBC1, is diminished in the tubules and duct. Expression patterns of the transcription factors WT1, Pax2, Pax8, Lim1, GATA3, and HNF1β are also examined in the golph2 knockdown embryos, the expression of WT1 is increased in the glomus and expanded laterally in the pronephric region. We conclude that the deletion of golph2 causes an increase in the expression of WT1, which may promote glomus formation and inhibit pronephric tubule differentiation

    Rapid deacetylation of yeast Hsp70 mediates the cellular response to heat stress

    Get PDF
    Hsp70 is a highly conserved molecular chaperone critical for the folding of new and denatured proteins. While traditional models state that cells respond to stress by upregulating inducible HSPs, this response is relatively slow and is limited by transcriptional and translational machinery. Recent studies have identified a number of post-translational modifications (PTMs) on Hsp70 that act to fine-tune its function. We utilized mass spectrometry to determine whether yeast Hsp70 (Ssa1) is differentially modified upon heat shock. We uncovered four lysine residues on Ssa1, K86, K185, K354 and K562 that are deacetylated in response to heat shock. Mutation of these sites cause a substantial remodeling of the Hsp70 interaction network of co-chaperone partners and client proteins while preserving essential chaperone function. Acetylation/deacetylation at these residues alter expression of other heat-shock induced chaperones as well as directly influencing Hsf1 activity. Taken together our data suggest that cells may have the ability to respond to heat stress quickly though Hsp70 deacetylation, followed by a slower, more traditional transcriptional response

    Shape-Controlled Synthesis of ZnS Nanostructures: A Simple and Rapid Method for One-Dimensional Materials by Plasma

    Get PDF
    In this paper, ZnS one-dimensional (1D) nanostructures including tetrapods, nanorods, nanobelts, and nanoslices were selectively synthesized by using RF thermal plasma in a wall-free way. The feeding rate and the cooling flow rate were the critical experimental parameters for defining the morphology of the final products. The detailed structures of synthesized ZnS nanostructures were studied through transmission electron microscope, X-ray diffraction, and high-resolution transmission electron microscope. A collision-controlled growth mechanism was proposed to explain the growth process that occurred exclusively in the gas current by a flowing way, and the whole process was completed in several seconds. In conclusion, the present synthetic route provides a facile way to synthesize ZnS and other hexagonal-structured 1D nanostructures in a rapid and scalable way

    Feeder Cells Support the Culture of Induced Pluripotent Stem Cells Even after Chemical Fixation

    Get PDF
    Chemically fixed mouse embryonic fibroblasts (MEFs), instead of live feeder cells, were applied to the maintenance of mouse induced pluripotent stem (miPS) cells. Formaldehyde and glutaraldehyde were used for chemical fixation. The chemically fixed MEF feeders maintained the pluripotency of miPS cells, as well as their undifferentiated state. Furthermore, the chemically fixed MEF feeders were reused several times without affecting their functions. These results indicate that chemical fixation can be applied to modify biological feeders chemically, without losing their original functions. Chemically fixed MEF feeders will be applicable to other stem cell cultures as a reusable extracellular matrix candidate that can be preserved on a long-term basis
    • …
    corecore