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1 Introduction
The vector equilibrium problem, which contains vector optimization problems, vector
variational inequality problems and vector complementarity problems as special case, has
been studied (see [–]). But so far, most papers focused mainly on the existence of so-
lutions and the properties of the solutions, there are a few papers which deal with the
optimality conditions. Giannessi et al. [] turned the vector variational inequalities with
constraints into another vector variational inequalities without constraints. They gave the
sufficient conditions for the efficient solution and the weakly efficient solution of the vec-
tor variational inequalities in finite dimensional spaces. Morgan and Romaniello [] gave
the scalarization and Kuhn-Tucker-like conditions for weak vector generalized quasivari-
ational inequalities in Hilbert space by using the subdifferential of the function. Gong []
presented the necessary and sufficient conditions for the weakly efficient solution, the
Henig efficient solution and the superefficient solution for vector equilibrium problems
with constraints under the condition of cone-convexity. Qiu [] presented the necessary
and sufficient conditions for globally efficient solutions of vector equilibrium problems
under generalized cone-subconvexlikeness. Gong and Xiong [] weakened the convexity
assumption in [] and obtained the necessary and sufficient conditions for weakly effi-
cient solutions of vector equilibrium problems. Under the nearly cone-subconvexlikeness,
Long et al. [] obtained the necessary and sufficient conditions for the Henig efficient so-
lution and the superefficient solution to the vector equilibrium problems with constraints.
By using the concept of Fréchet differentiability of mapping, Wei and Gong [] obtained
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the Kuhn-Tucker optimality conditions for weakly efficient solutions, Henig efficient so-
lutions, superefficient solutions and globally efficient solutions to the vector equilibrium
problems with constraints. Ma and Gong [] obtained the first-order necessary and suf-
ficient conditions for the weakly efficient solution, the Henig efficient solution, and the
globally proper efficient solution to the vector equilibrium problems with constraints.
It is well known that the second-order tangent sets and higher-order tangent sets in-

troduced in [], in general, are not cones and convex sets, there are some difficulties
in studying second-order and higher-order optimality conditions for general set-valued
optimization problems. Until now, there are some papers to deal with higher-order opti-
mality conditions by virtue of the higher-order derivatives or epiderivatives introduced by
the higher-order tangent sets (see [–]). However, as far as we know the second-order
optimality conditions of the solutions remain unstudied in set-valued vector equilibrium
problems.
Motivated by the work reported in [, , –, ], we introduce a new second-

order derivative called second-order composed contingent epiderivative for set-valued
maps and obtain some of its properties. By virtue of the second-order composed contin-
gent epiderivative, we obtain second-order sufficient optimality conditions and necessary
optimality conditions for the weakly efficient solution of set-valued vector equilibrium
problems.
The rest of the paper is organized as follows. In Section , we recall some notions. In

Section , we introduce second-order composed contingent epiderivatives for set-valued
maps and discuss some of its properties. In Section , we establish second-order neces-
sary and sufficient optimality conditions for weakly efficient solutions to set-valued vector
equilibrium problems.

2 Preliminaries and notations
Throughout this paper, let X, Y , and Z be three real normed spaces, Y ∗ and Z∗ be the
topological dual spaces of Y and Z, respectively. X , Y and Z denote the origins of X,
Y , and Z, respectively. Let C ⊂ Y and D ⊂ Z be closed convex pointed cones in Y and Z,
respectively. LetM be a nonempty subset in Y . The cone hull ofM is defined by cone(M) =
{ty|t ≥ , y ∈M}. Let C∗ be the dual cone of coneC, defined by

C∗ =
{
y∗ ∈ Y ∗ : y∗(c)≥ , for all c ∈ C

}
.

Let E be a nonempty subset ofX,G : E → Z be a set-valuedmap. The domain, the graph
and the epigraph of G are defined, respectively, by

dom(G) =
{
x ∈ E|G(x) �= ∅}

,

graph(G) =
{
(x, z) ∈ X × Z|x ∈ E, z ∈G(x)

}
,

epi(G) =
{
(x, z) ∈ X × Z|x ∈ E, z ∈G(x) +C

}
.

Denote

G(E) =
⋃
x∈E

G(x) and (G – z)(x) =G(x) – {z}.
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Definition . (see [, ]) A set-valued mapW : X → Y is said to be
(i) strictly positive homogeneous if

W (αx) = αW (x), ∀α > ,∀x ∈ X;

(ii) subadditive if

W (x) +W (x) ⊆W (x + x) +C.

Definition . (see [, ]) Let E ⊂ X be a nonempty convex set andG : E → Z be a set-
valued map with G(x) �= ∅, for all x ∈ E. G is said to be D-convex on E, if for any x,x ∈ E
and λ ∈ (, ),

λG(x) + ( – λ)G(x)⊆ G
(
λx + ( – λ)x

)
+D.

Let X be a normed space supplied with a distance d and K be a subset of X. We denote
by d(x,K ) = infy∈K d(x, y) the distance from x to K , where we set d(x,∅) = +∞.

Definition . (see [, ]) Let K be a nonempty subset of X and x ∈ K , u ∈ X. The
contingent cone of K at x is

T(K ,x) := {v ∈ X|∃tn ↓ ,∃vn → v, such that x + tnvn ∈ K ,∀n ∈N}.

Proposition . (see []) Let K ⊆ X and x ∈ K .The following statements are equivalent:
(i) u ∈ T(K ,x);
(ii) there exist sequences {λn} with λn → +∞ and {xn} with xn ∈ K and xn → x such that

λn(xn – x) → v.

Proposition . (see []) Let K ⊆ X and x ∈ K . Then T(K ,x) is a closed cone.

Proposition . (see []) Let K ⊆ X be a convex set, x ∈ K , and u ∈ T(K ,x). Then

T
(
T(K ,x),u

)
= clcone

(
cone(K – x) – u

)
.

Let E be a nonempty subset ofX, F : E×E → Y be a set-valued bifunction, F(x,x) �= ∅,
for all x,x ∈ E. We suppose that Y ∈ F(x,x), for any x ∈ E.
Let x ∈ E be given. Fx : E → Y is the set-valued map defined by

graph(Fx ) =
{
(x, y) ∈ E × Y : y ∈ F(x,x)

}
.

The set

epi(Fx ) =
{
(x, y) ∈ E × Y : y ∈ F(x,x) +C

}

is called the epigraph of Fx . Denote

Fx (E) = F(x,E) =
{
y ∈ F(x,x) : x ∈ E

}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/406
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Let G : E → Z be a set-valued map with G(x) �= ∅, for all x ∈ E.
In this paper, we consider the set-valued vector equilibrium problemwith unconstraints

(USVVEP): find x ∈ E such that

F(x,x)∩ (–A) = ∅, for all x ∈ E,

where A = A \ {Y }, A is a convex cone in Y .
We also consider the set-valued vector equilibriumproblemwith constraints (CSVVEP):

find x ∈ K such that

F(x,x)∩ (–A) = ∅, for all x ∈ K ,

where A = A \ {Y }, A is a convex cone in Y , and K := {x ∈ E :G(x)∩ (–D) �= ∅}.

Definition . Let intC �= ∅.
(i) A vector x ∈ E is called a weakly efficient solution of (USTVEP) if

F(x,E)∩ (– intC) = ∅.

(ii) A vector x ∈ K is called a weakly efficient solution of (CSTVEP) if

F(x,K )∩ (– intC) = ∅.

3 Second-order composed contingent epiderivatives
Let E ⊂ X. Let F : E → Y be a set-valued map, y ∈ F(x), and (u, v) ∈ X × Y . We first
recall the definition of the generalized second-order composed contingent epiderivative
introduced by Li et al. [].

Definition . (see []) The generalized second-order composed contingent epideriva-
tive D′′

g F(x, y,u, v) of F at (x, y) in the directive (u, v) is the set-valued map from X to Y
defined by

D′′
g F(x, y,u, v)(x) =MinC

{
y ∈ Y |(x, y) ∈ T

(
T

(
epi(F), (x, y)

)
, (u, v)

)}
.

Now we introduce the following second-order composed contingent epiderivatives of
set-valued maps, and then we investigate some of its properties.

Definition . Let (x, y) ∈ graph(F), (u, v) ∈ X × Y . The second-order composed con-
tingent epiderivative D′′F+(x, y,u, v) of F at (x, y) in the directive (u, v) is the set-valued
map from X to Y defined by

D′′F+(x, y,u, v)(x) =
{
y ∈ Y |(x, y) ∈ T

(
T

(
epi(F), (x, y)

)
, (u, v)

)}
, ∀x ∈ X.

Proposition . Let (x̂, ŷ) ∈ graph(F), (û, v̂) ∈ X × Y , and M := domD′′F+(x̂, ŷ, û, v̂). Then

D′′F+(x̂, ŷ, û, v̂)(x) +C =D′′F+(x̂, ŷ, û, v̂)(x), ∀x ∈M. ()

http://www.journalofinequalitiesandapplications.com/content/2014/1/406
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Proof Let x ∈M, y ∈D′′F+(x̂, ŷ, û, v̂)(x)+C. Then there exist (x, ȳ) ∈ T(T(epiF , (x̂, ŷ)), (û, v̂)),
and c ∈ C, such that (x, y) = (x, ȳ + c). Since (x, ȳ) ∈ T(T(epiF , (x̂, ŷ)), (û, v̂)), there exist se-
quences (xn, yn) → (x, ȳ) and tn ↓ +, such that

(û, v̂) + tn(xn, yn) ∈ T
(
epiF , (x̂, ŷ)

)
, ∀n ∈N .

Moreover, ∀n ∈N , there exist sequences (xkn, ykn) → (û, v̂) + tn(xn, yn) and tkn ↓ +, such that
(x̂, ŷ) + tkn(xkn, ykn) ∈ epiF , ∀k ∈N . Then we have

ŷ + tkny
k
n ∈ F

(
x̂ + tknx

k
n
)
+C, ∀n,k ∈N . ()

Since c ∈ C, combine with (), we have ŷ + tkn(ykn + tnc) = ŷ + tknykn + tkntnc ∈ F(x̂ + tknxkn) +
C, ∀n,k ∈ N . That is (x̂, ŷ) + tkn(xkn, ykn + tnc) ∈ epiF+, ∀n,k ∈ N . Since (xkn, ykn) → (û, v̂) +
tn(xn, yn), we have (xkn, ykn + tnc)→ (û, v̂) + tn(xn, yn + c) as k → +∞. Thus,

(û, v̂) + tn(xn, yn + c) ∈ T
(
epiF , (x̂, ŷ)

)
, ∀n ∈N .

Simultaneously, (xn, yn + c) → (x, ȳ + c), since (xn, yn) → (x, ȳ) as n → +∞. Together with
(x, y) = (x̄, ȳ + c), we have (x, y) = T(T(epiF , (x̂, ŷ)), (û, v̂)), which implies

y ∈ D′′F+(x̂, ŷ, û, v̂)(x).

So

D′′F+(x̂, ŷ, û, v̂)(x) +C ⊆D′′F+(x̂, ŷ, û, v̂)(x).

Naturally,D′′F+(x̂, ŷ, û, v̂)(x)⊆D′′F+(x̂, ŷ, û, v̂)(x)+C. Thus () holds, and this completes the
proof. �

By definitions and Proposition ., we can conclude that the following result holds.

Proposition . Let F : E → Y , (x, y) ∈ graph(F), (u, v) ∈ T(epi(F), (x, y)), and x ∈ X.
Then D′′

g F(x, y,u, v)(x) +C ⊆D′′F+(x, y,u, v)(x).

Remark . The inclusion relation

D′′F+(x, y,u, v)(x)⊆D′′
g F(x, y,u, v)(x) +C

may not hold.

Now we give the following example to explain Remark ..

Example . Let C = R
+ and F(x) = {(y, y) ∈ R|y ≥ x, y ∈ R}, ∀x ∈ R+. Let (x, y) =

(, (, )), and (u, v) = (, (, )). Then

T
(
T

(
epi(F), (x, y)

)
, (u, v)

)
=

{(
x, (y, y)

) ∈ R× R|x ∈ R, y ≥ , y ∈ R
}
.

http://www.journalofinequalitiesandapplications.com/content/2014/1/406
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Therefore, for any x ∈ R, we have

D′′
g F(x, y,u, v)(x) = ∅

and

D′′F+(x, y,u, v)(x) =
{
(y, y)|y ≥ , y ∈ R

}
.

And then, for any x ∈ R, we have

D′′F+(x, y,u, v)(x)�D′′
g F(x, y,u, v)(x) +C.

Now we discuss some crucial properties of the second-order composed contingent epi-
derivative.

Proposition . Let (x, y) ∈ graphF , (u, v) ∈ T(epiF , (x, y)) with v ∈ C and E ⊂ X be
convex. If F is C-convex on E, then for all x ∈ E,

F(x) – {y} +C ⊂D′′F+(x, y,u, v)(x – x – u).

Proof Since F is C-convex on E, epiF is a convex set. So it follows from Proposition .
that

T
(
T

(
epiF , (x, y)

)
, (u, v)

)
= clcone

(
cone

(
epiF –

{
(x, y)

})
–

{
(u, v)

})
. ()

Since for every c ∈ C, x ∈ S and y ∈ F(x), one has

(x – x – u, y – y + c)

= (x – x – u, y + c + v – y – v) ∈ {x} × (
F(x) +C

)
–

{
(x, y)

}
–

{
(u, v)

}
.

Then it follows from () that

(x – x – u, y – y) ∈ T
(
T

(
epiF , (x, y)

)
, (u, v)

)
.

Thus, by the definition of the second-order composed contingent epiderivative, we have

y – y + c ∈D′′F+(x, y,u, v)(x – x – u),

and then

F(x) – {y} +C ⊂D′′F+(x, y,u, v)(x – x – u), ∀x ∈ E.

The proof is complete. �
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Proposition . Let (x, y) ∈ graph(F), (u, v) ∈ T(epiF , (x, y)). Then
(i) D′′F+(x, y,u, v) is strictly positive homogeneous.

Moreover, if F is C-convex on a nonempty convex set E, then
(ii) D′′F+(x, y,u, v) is subadditive.

Proof (i) Let α >  and x ∈ X.
If y ∈ D′′F+(x, y,u, v)(x), then there exist sequences {hn} with hn → + and {(xn, yn)}

with (xn, yn) ∈ T(epiF , (x, y)) such that

(xn, yn) – (u, v)
hn

→ (x, y),

and then

(xn, yn) – (u, v)

α
hn

→ (αx,αy).

So (αx,αy) ∈ T(T(epiF , (x, y)),u, v), and then we can obtain

αy ∈D′′F+(x, y,u, v)(αx).

Thus

αD′′F+(x, y,u, v)(x)⊆D′′F+(x, y,u, v)(x)(αx). ()

The proof of

D′′F+(x, y,u, v)(αx)⊆ αD′′F+(x, y,u, v)(x)(x)

follows along the lines of (). So D′′F+(x, y,u, v) is strictly positive homogeneous.
(ii) Let x,x ∈ X, y ∈D′′F+(x, y,u, v)(x), y ∈D′′F+(x, y,u, v)(x). Then one has

(x, y) ∈ T
(
T

(
epiF , (x, y)

)
, (u, v)

)
, (x, y) ∈ T

(
T

(
epiF , (x, y)

)
, (u, v)

)
.

Since F is C-convex on S, epiF is convex, and then T(T(epiF , (x, y)), (u, v)) is a close and
convex cone. Thus we have

(x + x, y + y) ∈ T
(
T

(
epiF , (x, y)

)
, (u, v)

)
,

and then

y + y ∈ D′′F+(x, y,u, v)(x + x).

Thus

D′′F+(x, y,u, v)(x) +D′′F+(x, y,u, v)(x) ⊂D′′F+(x, y,u, v)(x + x) +C,

and the proof is complete. �

By the proof of Proposition ., we can conclude that the following result holds.
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Proposition . Let (x, y) ∈ graph(F), (u, v) ∈ T(epiF , (x, y)), M := domD′′F+(x,
y,u, v). If F is C-convex on a nonempty convex set E, then D′′F+(x, y,u, v)(M) is a convex
cone.

4 Second-order optimality conditions of weakly efficient solutions
Throughout this section, let x ∈ K , y = Y ∈ Fx (x), intC �= ∅, and intD �= ∅. Firstly, we
recall a definition and a result in [].
Let K ⊂ X and x ∈ K . The interior tangent cone of K at x defined as

IT(K ,x) =
{
u ∈ X|∃δ >  such that x + tu′ ∈ K ,∀t ∈ (, δ],∀u′ ∈ BX(u, δ)

}
,

where BX(u, δ) stands for the closed ball centered at u ∈ X and of radius δ.

Lemma . (see []) If K ⊂ X is convex, x ∈ K , and intK �= ∅, then

IT(intK ,x) = intcone(K – x).

Theorem . Let x be a weakly efficient solution of the problem (USVVEP). Then, for
every (u, v) ∈ T(epiFx , (x, y)) with v ∈ –∂C, we have

[
D′′(Fx )+(x, y,u, v)(x) + line{v}] ∩ (– intC) = ∅, ()

for every x ∈ domD′′(Fx )+(x, y,u, v).

Proof Suppose to the contrary that there exists an x ∈ domD′′(Fx )+(x, y,u, v) such that
() does not hold. Then there exist λ ∈ R and

y ∈ D′′(Fx )+(x, y,u, v)(x) ()

such that

y′ := y + λv ∈ – intC. ()

Let us consider two possible cases for λ.
Case : If λ > , then it follows from Proposition . and () that y′ ∈ D′′(Fx )+(x, y,

u, v)(x). So

(
x, y′) ∈ T

(
T

(
epiFx , (x, y)

)
, (u, v)

)
. ()

By definition, there exist sequences λn → +∞ and (un, vn) ∈ T(epiF , (x, y)) such that
(un, vn) → (u, v) and

λn
(
(un, vn) – (u, v)

) → (
x, y′), as n→ +∞. ()

It follows from (), (), and v ∈ –C that there exists N ∈N such that

vn ∈ – intC, ∀n >N. ()
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Since (un, vn) ∈ T(epiFx , (x, y)), for every n ∈ N , there exist a sequence λk
n → +∞ as

k → +∞ and a sequence (xkn, ykn) ∈ epiF , such that (xkn, ykn) → (x, y) and

λk
n
((
xkn, y

k
n
)
– (x, y)

) → (un, vn), as k → +∞. ()

It follows from () that there exists N(n) ∈N such that

λk
n
(
ykn – y

) ∈ – intC, ∀k >N(n),∀n >N,

which implies

ykn – y ∈ – intC, ∀k >N(n),∀n >N. ()

Since (xkn, ykn) ∈ epiFx , there exists ȳkn ∈ Fx (xkn) such that ykn ∈ {ȳkn} + C. Then, by (), we
have

ȳkn – y ∈ – intC, ∀k >N(n),∀n >N.

Therefore

F
(
x,xkn

) ∩ (– intC) �= ∅,

which contradicts that (x, y) is a weakly efficient solution of the problem (USVVEP).
Case : If λ ≤ , then it follows from Proposition v ∈ –C and () that y ∈ – intC and

(x, y) ∈ T
(
T

(
epiFx , (x, y)

)
, (u, v)

)
.

By a similar proof method to case , there exist consequences xkn and N,N(n) ∈ N such
that

F
(
x,xkn

) ∩ (– intC) �= ∅, ∀k >N(n),∀n >N,

which contradicts that x is a weakly efficient solution of the problem (USVVEP). Thus
() holds, and the proof is complete. �

Remark . In Theorem ., we cannot use v ∈ – intC instead of v ∈ –∂C. Since (x, y)
is a weakly efficient solution of the problem (USVVEP),

Fx (x)∩ (– intC) = ∅, ∀x ∈ E. ()

It follows from (u, v) ∈ T(epi(Fx ), (x, y)), and y =  that there exist sequences {λn} with
λn → +∞ and (xn, yn) ∈ epi(Fx ) with (xn, yn) → (x, ) such that

λn
(
(xn, yn) – (x, )

) → (u, v), as n→ +∞.

So, it follows from v ∈ – intC that there exists N ∈N such that

λnyn ∈ – intC, ∀n >N ,
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which implies

yn ∈ – intC, ∀n >N . ()

Since (xn, yn) ∈ epi(Fx ), there exists ȳn ∈ Fx (xn) such that yn ∈ {ȳn} + C. Then, combined
with (), we have

ȳn ∈ – intC, ∀n >N .

Therefore

Fx (xn)∩ (– intC) �= ∅, ∀xn ∈ E,∀n >max{N ,N},

which contradicts ().

Next, we give an example to illustrate Theorem ..

Example . Let F(x) = {(y, y) ∈ R|y ∈ R, y ≥ x}, ∀x ∈ R+, (x, y) = (, (, )), and
C = R

+. Then T(epi(F), (x, y)) = {(u, (v, v)) ∈ R× R|x ∈ R+, v ∈ R, v ≥ }. Take (u, v) =
(, (–, )). Then

T
(
T

(
epi(F), (x, y)

)
, (u, v)

)
=

{(
x, (y, y)

) ∈ R× R|x ∈ R, y ∈ R, y ≥ 
}
.

Therefore, for any x ∈ R, we have

D′′F+(x, y,u, v)(x) + line{v} = {
(y, y)|y ∈ R, y ≥ 

}
.

And then, for any x ∈ R, we have

[
D′′F+(x, y,u, v)(x) + line{v}] ∩ (– intC) = ∅,

which shows that Theorem . holds.

Theorem . Let (u, v) ∈ T(epiFx (x, y)) with v ∈ C and E ⊂ X be convex. If Fx is C-
convex on E, and for all x ∈ E,

D′′(Fx )+(x, y,u, v)(x – x – u)∩ (– intC) = ∅, ()

then x is a weakly efficient solution of the problem (USVVEP).

Proof It follows from Proposition . that

(Fx )(x)⊂D′′(Fx )+(x, y,u, v)(x – x – u), ∀x ∈ E.

Then, from (), we have

(Fx )(x)∩ (– intC) = ∅, ∀x ∈ E.

So x is a weakly efficient solution of (USVVEP), and the proof is complete. �
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Theorem . Let (u, v,w) ∈ T(epi(Fx ,G),x, y, z) with v ∈ –∂C and w ∈ –D. If x is a
weakly efficient solution of (CSVVEP), then for any z ∈G(x)∩ (–D),

D′′(Fx ,G)+(x, y, z,u, v,w + z)(x)

∩ – cone
(
int(C ×D) + line

{
(v,w + z)

}) \ {
(Y , Z)

}
= ∅, ()

for all x ∈ � := dom[D′′(Fx ,G)+(x, y, z,u, v,w + z)].

Proof To prove the result by contradiction, suppose that there exists an x ∈ � such that
() does not hold, that is, there exists a (y, z) ∈ Y × Z such that

(y, z) ∈D′′(Fx ,G)+(x, y, z,u, v,w + z)(x)

and

(y, z) ∈ – cone
(
int(C ×D) + line

{
(v,w + z)

}) \ {
(Y , Z)

}
. ()

Then, by the definition of second-order composed contingent epiderivatives, there exist
sequences λn → +∞ and (un, vn,wn) ∈ T(epi(Fx ,G), (x, y, z)) such that (un, vn,wn) →
(u, v,w + z) and

λn
(
(un, vn,wn) – (u, v,w + z)

) → (x, y, z), as n→ +∞. ()

It follows from () that there exist μ > , ν ∈ R, c ∈ intC, and d ∈ intD such that

y = –μ(c + νv), z = –μ
(
d + ν(w + z)

)
. ()

Let us consider two possible cases for ν .
Case : If ν ≤ , then, from (), v ∈ –C, and w, z ∈ –D, we have y ∈ – intC and z ∈

– intD. Thus, by (), there exists N ∈N such that

λn(vn – v) ∈ – intC, λn
(
wn – (w + z)

) ∈ – intD, ∀n >N.

Thus, it follows from v ∈ –C and w ∈ –D that

vn ∈ – intC, wn ∈ – intD, ∀n >N. ()

Since (un, vn,wn) ∈ T(epi(Fx ,G), (x, y, z)), for every n ∈N , there exist a sequence {λk
n}

with λk
n → +∞ as k → +∞ and a sequence (xkn, ykn, zkn) ∈ epi(Fx ,G), such that (xkn, ykn, zkn) →

(x, y, z) and

λk
n
((
xkn, y

k
n, z

k
n
)
– (x, y, z)

) → (un, vn,wn), as k → +∞. ()

It follows from () and () that there exists N(n) ∈N such that

λk
n
(
ykn – y

) ∈ – intC, λk
n
(
zkn – z

) ∈ – intD, ∀k >N(n),∀n >N,
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which implies

ykn – y ∈ – intC, zkn – z ∈ – intD, ∀k >N(n),∀n >N. ()

Since (xkn, ykn, zkn) ∈ epi(Fx ,G), there exist ȳkn ∈ Fx (xkn), z̄kn ∈ G(xkn), c ∈ C and d ∈ D such
that ykn = ȳkn + c and zkn = z̄kn + d. Then, by () and y = , we have

ȳkn ∈ – intC, ∀k >N(n), z̄kn ∈ – intD, ∀n >N.

So

Fx
(
xkn

) ∩ – intC �= ∅, xkn ∈ K ,∀k >N(n),∀n >N,

which contradicts that x is a weakly efficient solution of (CSVVEP).
Case : If ν > , then, from (), we get y = –μν( 

ν
c + v) and z = –μν( 

ν
d + (w + z)). So it

follows from c ∈ intC and d ∈ intD that

y ∈ – intcone
(
C + {v}), z = – intcone

(
D + {w + z}

)
. ()

Then, by Lemma. and (), we get y ∈ IT(– intC, v) and z = IT(– intD,w+z). Therefore,
there exists δ >  such that

v + δy′ ∈ – intC, ∀y′ ∈ BY (y, δ), ()

w + z + δz′ ∈ – intD, ∀y′ ∈ BZ(z, δ). ()

For this δ, it follows from () that there exists N ∈N such that

δλn > , λn(vn – v) ∈ BY (y, δ), λn
(
wn – (w + z)

) ∈ BZ(z, δ), ∀n >N.

Then, by () and (), we have

vn –
(
 –


δλn

)
v ∈ – intC, wn –

(
 –


δλn

)
(w + z) ∈ – intD, ∀n >N.

Thus, from v ∈ –C, w, z ∈ –D, and δλn > , ∀n >N, we have

vn ∈ – intC, wn ∈ – intD, ∀n >N.

By a similar proof method to case , there exists N(n) ∈N such that

Fx
(
xkn

) ∩ – intC �= ∅, xkn ∈ K ,∀k >N(n),∀n >N,

which contradicts that x is a weakly efficient solution of (CSVVEP). Thus () holds and
the proof is complete. �
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Theorem . Let (u, v,w) ∈ T(epi(Fx ,G),x, y, z) with v ∈ –∂C and w ∈ –D. If x is a
weakly efficient solution of (CSVVEP), then for any z ∈G(x)∩ (–D),

D′′(Fx ,G)+(x, y, z,u, v,w + z)(x)∩ –
(
int(C ×D) +

{
(, z)

})
= ∅, ()

for all x ∈ � := dom[D′′(Fx ,G)+(x, y, z,u, v,w + z)].

Proof To prove the result by contradiction, suppose that there exists an x ∈ � such that
() does not hold, that is, there exists (y, z) ∈ Y × Z such that

(y, z) ∈D′′(Fx ,G)+(x, y, z,u, v,w + z)(x),

(y, z) ∈ –
(
int(C ×D) +

{
(, z)

})
. ()

Then, by the definition of second-order composed contingent epiderivatives, there exist
sequences λn → +∞ and (un, vn,wn) ∈ T(epi(Fx ,G), (x, y, z)) such that (un, vn,wn) →
(u, v,w + z) and

λn
(
(un, vn,wn) – (u, v,w + z)

) → (x, y, z), as n→ +∞. ()

It follows from () that there exist c ∈ intC and d ∈ intD such that

y = –c, z = –(d + z). ()

Thus, by (), there exists N ∈N such that

λn > , λn(vn – v) ∈ – intC, λn
(
wn – (w + z)

) ∈ –(intD + z), ∀n >N.

Thus, it follows from v ∈ –C and w, z ∈ –D that

vn ∈ – intC, wn ∈ – intD, ∀n >N. ()

Since (un, vn,wn) ∈ T(epi(Fx ,G), (x, y, z)), for every n ∈N , there exist a sequence {λk
n}

with λk
n → +∞ as k → +∞ and a sequence (xkn, ykn, zkn) ∈ epi(Fx ,G), such that (xkn, ykn, zkn) →

(x, y, z) and

λk
n
((
xkn, y

k
n, z

k
n
)
– (x, y, z)

) → (un, vn,wn), as k → +∞. ()

It follows from () and () that there exists N(n) ∈N such that

λk
n
(
ykn – y

) ∈ – intC, λk
n
(
zkn – z

) ∈ – intD, ∀k >N(n),∀n >N,

which implies

ykn – y ∈ – intC, zkn – z ∈ – intD, ∀k >N(n),∀n >N. ()
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Since (xkn, ykn, zkn) ∈ epi(Fx ,G), there exist ȳkn ∈ Fx (xkn), z̄kn ∈ G(xkn), c ∈ C, and d ∈ D such
that ykn = ȳkn + c and zkn = z̄kn + d. Then, by () and y = , we have

ȳkn ∈ – intC, ∀k >N(n), z̄kn ∈ – intD, ∀n >N.

So

Fx
(
xkn

) ∩ – intC �= ∅, xkn ∈ K ,∀k >N(n),∀n >N,

which contradicts that x is a weakly efficient solution of (CSVVEP). Thus () holds and
the proof is complete. �

Theorem . Let E ⊂ X be a nonempty convex set, z ∈ G(x) ∩ (–D) and (u, v,w) ∈ X ×
(–C)× (–D). Suppose that the following conditions are satisfied:

(i) (Fx ,G) is C ×D-convex on E.
(ii) x is a weakly efficient solution of (CSVVEP).

Then there exist φ ∈ C∗ and ψ ∈ D∗, not both zero functionals, such that

inf

{ ⋃
(y,z)∈A

φ(y) +ψ(z)
}
=  and ψ(z) = ,

where A :=
⋃

x∈� D′′(Fx ,G)+(x, y, z,u, v,w + z)(x) and � := dom[D′′(Fx ,G)+(x, y, z,
u, v,w + z)].

Proof Define M = A + (Y , z). By Proposition ., we see that M is a convex set. By The-
orem ., we get

M ∩ (
– int(C ×D)

)
= ∅.

By the separation theorem of convex sets, there exist φ ∈ Y ∗ and ψ ∈ Z∗, not both zero
functionals, such that

φ(y) +ψ(z) ≥ φ(ȳ) +ψ(z̄), for all (y, z) ∈M, (ȳ, z̄) ∈ – int(C ×D). ()

Since intC ∪ {Y } and intD∪ {Z} are cones, by (), we have

φ(ȳ) ≤ ψ(z̄), for all (ȳ, z̄) ∈ – intC × intD, ()

and

φ(y) +ψ(z) ≥ , for all (y, z) ∈M. ()

From (), we find that ψ is bounded below on intD. Then ψ(z) ≥ , for all z ∈ intD.
Naturally ψ ∈D∗.
By a similar line of proof to ψ ∈D∗, we can obtain φ ∈ C∗.
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It follows from Proposition . that (Y , Z) ∈ A, and then, from z ∈ –D, ψ ∈ D∗, and
(), we obtain

inf

{ ⋃
(y,z)∈A

φ(y) +ψ(z)
}
=  and ψ(z) = .

The proof is complete. �

Theorem . Let E ⊂ X be a nonempty convex set, (u, v,w) ∈ T(epi(Fx ,G),x, y, z) with
v ∈ C and w ∈Dand z ∈G(x)∩ (–D). Suppose that the following conditions are satisfied:

(i) (Fx ,G) is C ×D-convex on E;
(ii) there exist φ ∈ C∗ \ {} and ψ ∈ D∗ such that

inf

{ ⋃
(y,z)∈V

φ(y) +ψ(z)
}
=  and ψ(z) = ,

where U :=
⋃

x∈� D′′(Fx ,G)+(x, y, z,u, v,w)(x) and V := dom[D′′(Fx ,G)+(x, y, z,u,
v,w)].
Then x is a weakly efficient solution of (CSVVEP).

Proof To prove the result by contradiction, suppose that x is not a weakly efficient solu-
tion of (CSVVEP). Then there exist x′ ∈ K and y′ ∈ F(x,x′) such that y′ ∈ – intC. Since
x′ ∈ K , there exists z′ ∈ G(x′) ∩ (–D). It follows from assumption (i) and Proposition .
that we have

(
y′ – y, z′ – z

) ∈U ,

and then, from assumption (ii), we obtain

φ
(
y′ – y

)
+ψ

(
z′ – z

) ≥ . ()

Since y′ – y = y′ ∈ – intC, φ ∈ C∗ \ {}, φ(y′ – y) < . It follows from z′ ∈ G(x′) ∩ (–D),
ψ ∈D∗, and ψ(z) =  that ψ(z′ – z) ≤ , thus

φ
(
y′ – y

)
+ψ

(
z′ – z

)
< ,

which contradicts (). So x is a weakly efficient solution of (CSVVEP), and this com-
pletes the proof. �

5 Conclusions
In this paper, we propose a new concept of a second-order derivative for set-valued maps,
which is called the second-order composed contingent epiderivative, and we investigate
some of its properties. Simultaneously, by virtue of the derivative, we obtain second-order
sufficient optimality conditions and necessary optimality conditions for set-valued equi-
librium problems.
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