6,953 research outputs found

    KDM2B/FBXL10 targets c-Fos for ubiquitylation and degradation in response to mitogenic stimulation.

    Get PDF
    KDM2B (also known as FBXL10) controls stem cell self-renewal, somatic cell reprogramming and senescence, and tumorigenesis. KDM2B contains multiple functional domains, including a JmjC domain that catalyzes H3K36 demethylation and a CxxC zinc-finger that recognizes CpG islands and recruits the polycomb repressive complex 1. Here, we report that KDM2B, via its F-box domain, functions as a subunit of the CUL1-RING ubiquitin ligase (CRL1/SCF(KDM2B)) complex. KDM2B targets c-Fos for polyubiquitylation and regulates c-Fos protein levels. Unlike the phosphorylation of other SCF (SKP1-CUL1-F-box)/CRL1 substrates that promotes substrates binding to F-box, epidermal growth factor (EGF)-induced c-Fos S374 phosphorylation dissociates c-Fos from KDM2B and stabilizes c-Fos protein. Non-phosphorylatable and phosphomimetic mutations at S374 result in c-Fos protein which cannot be induced by EGF or accumulates constitutively and lead to decreased or increased cell proliferation, respectively. Multiple tumor-derived KDM2B mutations impaired the function of KDM2B to target c-Fos degradation and to suppress cell proliferation. These results reveal a novel function of KDM2B in the negative regulation of cell proliferation by assembling an E3 ligase to targeting c-Fos protein degradation that is antagonized by mitogenic stimulations

    UAV-Assisted Wireless Powered Cooperative Mobile Edge Computing:Joint Offloading, CPU Control, and Trajectory Optimization

    Get PDF
    This article investigates the unmanned-aerial-vehicle (UAV)-enabled wireless powered cooperative mobile edge computing (MEC) system, where a UAV installed with an energy transmitter (ET) and an MEC server provides both energy and computing services to sensor devices (SDs). The active SDs desire to complete their computing tasks with the assistance of the UAV and their neighboring idle SDs that have no computing task. An optimization problem is formulated to minimize the total required energy of UAV by jointly optimizing the CPU frequencies, the offloading amount, the transmit power, and the UAV’s trajectory. To tackle the nonconvex problem, a successive convex approximation (SCA)-based algorithm is designed. Since it may be with relatively high computational complexity, as an alternative, a decomposition and iteration (DAI)-based algorithm is also proposed. The simulation results show that both proposed algorithms converge within several iterations, and the DAI-based algorithm achieve the similar minimal required energy and optimized trajectory with the SCA-based one. Moreover, for a relatively large amount of data, the SCA-based algorithm should be adopted to find an optimal solution, while for a relatively small amount of data, the DAI-based algorithm is a better choice to achieve smaller computing energy consumption. It also shows that the trajectory optimization plays a dominant factor in minimizing the total required energy of the system and optimizing acceleration has a great effect on the required energy of the UAV. Additionally, by jointly optimizing the UAV’s CPU frequencies and the amount of bits offloaded to UAV, the minimal required energy for computing can be greatly reduced compared to other schemes and by leveraging the computing resources of idle SDs, the UAV’s computing energy can also be greatly reduced

    Effect of shell thickness on small-molecule solar cells enhanced by dual plasmonic gold-silica nanorods

    Get PDF
    Cataloged from PDF version of article.Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm-10 nm were incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt. %) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power conversion efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simulation shows that the localized electric field intensity at the silica shell-organic layer interface decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity dependence measurement of the short-circuit current density shows that the silica shell reduces bimolecular recombination at the Au surface. As a result, both localized field intensity and light scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm. (C) 2014 AIP Publishing LLC

    Boundary K-matrices and the Lax pair for 1D open XYZ spin-chain

    Full text link
    We analysis the symmetries of the reflection equation for open XYZXYZ model and find their solutions K±K^{\pm} case by case. In the general open boundary conditions, the Lax pair for open one-dimensional XYZXYZ spin-chain is given.Comment: LaTeX, 17 pages, errors in references correcte

    Collision broadening of rho meson in a dropping mass scenario

    Full text link
    Vector mesons containing light quarks are thought to have their masses reduced in dense nuclear matter, sacrificing some of their energy to the scalar field which becomes appreciable at finite baryon density. Model calculations find masses which fall by a couple tens of percents in normal nuclear matter, and by several hundred MeV in dense matter. We estimate the collision rate for rho mesons in such a scenario and at finite temperature. Compared to its free-mass value, the collision rate changes by nearly a factor of two both above and below, depending on the density. This collision broadening effect could be important for estimates of low-mass dilepton production in heavy-ion collisions.Comment: 8 pages LaTeX, 2 PostScript figure

    Pillared two-dimensional metal-organic frameworks based on a lower-rim acid appended calix[4]arene

    Get PDF
    Solvothermal reactions of the lower-rim functionalized diacid calix[4]arene 25,27-bis(methoxycarboxylic acid)-26,28-dihydroxy-4-tert-butylcalix[4]arene (LH₂) with Zn(NO₃)₂•6H₂O and the dipyridyl ligands 4,4/-bipyridyl (4,4/-bipy), 1,2-di(4-pyridyl)ethylene (DPE) or 4,4/-azopyridyl (4,4/-azopy) afforded a series of 2-D structures of the formulae {[Zn(4,4/-bipy)(L)]•2¼DEF}n (1), {[Zn₂(L)(DPE)]•DEF}n (2) and {[Zn(OH₂)₂(L)(4,4/-azopy)]•DEF}n (3) (DEF = diethylformamide)
    • …
    corecore