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Chemically synthesized gold (Au)-silica nanorods with shell thickness of 0 nm–10 nm were

incorporated into the bulk heterojunction of a small-molecule organic solar cell. At optimal (1 wt.

%) concentration, Au-silica nanorods with 5 nm shell thickness resulted in the highest power con-

version efficiency of 8.29% with 27% relative enhancement. Finite-difference time-domain simula-

tion shows that the localized electric field intensity at the silica shell-organic layer interface

decreases with the increase of shell thickness for both 520 nm and 680 nm resonance peaks. The

enhanced haze factor for transmission/reflection of the organic layer is not strongly dependent on

the shell thickness. Bare Au nanorods yielded the lowest efficiency of 5.4%. Light intensity

dependence measurement of the short-circuit current density shows that the silica shell reduces

bimolecular recombination at the Au surface. As a result, both localized field intensity and light

scattering are involved in efficiency enhancement for an optimized shell thickness of 5 nm. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4896516]

Plasmonic organic solar cells (OSCs) have been inten-

sively investigated in recent years in the field of organic pho-

tovoltaics.1–3 Nanoparticles (NPs) of the noble metals,

primarily Au and Ag were found to be effective in enhancing

the power conversion efficiency (PCE) of both single junc-

tion and tandem OSCs through the localized surface plasmon

resonance (LSPR) phenomenon.4–6 Au and Ag NPs have

been incorporated by solution processing into the anode

buffer (hole transport) layer, active layer, or at the interface

of these two layers.7–9 In addition to the nanosphere, various

NP morphologies such as nanorod, nanodisk, and nanoprism

had been studied. When chemically synthesized Au or Ag

NPs were introduced directly into the photoactive layer, the

PCE was observed to either increase slightly or decrease

with respect to the reference device despite increased optical

absorption and carrier mobility.10 This effect has been attrib-

uted to increased carrier recombination at the surface ligands

or surfactants of the chemically synthesized metallic NPs or

increased exciton quenching. As a result, core-shell Au and

Ag NPs with an insulating silica (SiO2) shell had been stud-

ied for incorporation in the active layer.11–13 In Ref. 13, a

26% relative enhancement in PCE was observed for a low

bandgap polymer:fullerene bulk heterojunction (BHJ) device

after incorporation of 1% weight ratio (wt. %) Au-silica

nanorods. A similar enhancement was found when Ag-silica

NPs were introduced at the interface of the anode buffer

layer and active layer of a polymer:fullerene BHJ device.14

The thickness of the silica shell is an important design pa-

rameter of core-shell noble metal-silica NPs. If the silica

shell is too thick, the localized electric field enhancement

effect around the NP embedded in the photoactive layer will

be greatly diminished. On the other hand, a silica shell that is

too thin may result in increased surface recombination. Thus

far, there had been no systematic experimental study on the

effect of the silica shell thickness on the enhancement mech-

anism of Au-silica nanorods in plasmonic OSCs. There is

also a need to quantitatively compare the surface recombina-

tion of bare and core shell Au-silica NPs within a BHJ.

In this paper, we studied the effect of the silica shell

thickness of Au-silica nanorods on the performance of solution-

processed small-molecule (SM) BHJ OSCs consisting of 7,70-
(4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b0]-dithiophene-

2,6-diyl)bis(6-fluoro-4-(50-hexyl-[2,20-bithiophen]-5-yl)benzo

[c][1,2,5]thiadiazole):[6,6]-phenyl-C71-butyric acid methyl

ester (p-DTS(FBTTh2)2:PC70BM). The choice of nanorods is

motivated by the fact that unlike nanospheres, the use of

nanorods allows the tuning of the longitudinal LSPR absorp-

tion peak to match the absorption spectrum of the donor:ac-

ceptor blend.

The SM solar cell with the structure of indium tin oxide

(ITO)/Poly(3,4-ethylenedioxythiophene):poly(styrenesulfo-

nate) (PEDOT:PSS)/p-DTS(FBTTh2)2:PC70BM/Ca/Ag were

fabricated. The p-DTS(FBTTh2)2:PC70BM blend and Au- silica

nanorods were mixed in chlorobenzene (CB) with 0.4 v/v% 1,8-

octanedithiol (DIO) processing additive to form uniform solu-

tion. The final solutions consisted of p-DTS(FBTTh2)2 (21 mg/

ml) and PC70BM (14 mg/ml) and Au-silica nanorods (1 wt. % of

the weight of p-DTS(FBTTh2)2:PC70BM blend). For all devices,
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the solutions were spin-coated at 2000 rpm for 45 s in a glove

box. All the BHJ films were thermally annealed at 80 �C for

10 min and their thicknesses were determined by a surface

profiler to be 100 6 2 nm. Finally, 20 nm Ca and 80 nm Ag

were thermally deposited sequentially under vacuum condi-

tion of 1� 10�4 Pa. All fabricated devices have an active

area of 8 mm2 and were encapsulated before removal from

the glove box. A Keithley 2400 source meter unit under

simulated 100 mW/cm2 (AM1.5G) irradiation from a solar

simulator was used to obtain the current density-voltage

(J-V) characteristics. The light intensity dependence of

short-circuit current density (JSC) was studied by tuning the

light intensity using neutral density filters. The light intensity

passing through the filter was confirmed by a power meter.

Optical absorption spectra of the thin film samples were

measured using a UV/Vis/near-IR spectrophotometer (Perkin

Elmer Lambda 950) fitted with an integrating sphere with a

diameter of 150 mm. Four types of Au nanorods with the

silica shell thicknesses of 0 nm, 5 nm, 7 nm, and 10 nm,

respectively, were synthesized using the seed-mediated

method for the Au core followed by solution synthesis of the

silica shell.15 The synthesis procedure of Au-silica nanorods

is described in detail in the supplementary material.16 The

thickness of the silica shell was increased by increasing the

amount of tetraethoxysilane (TEOS) used during synthesis.17

A JEOL 1400 transmission electron microscope (TEM) with

an accelerating voltage of 100 kV was used to obtain bright

field images of the NPs.

The TEM images (Figs. 1(a)–1(d)) display that the aver-

age length and diameter of the Au nanorod core are approxi-

mately 87 nm and 34 nm, respectively. The normalized UV/

Vis absorption spectrum (Fig. 1(e)) reveals that Au-silica

nanorods with 5 nm of silica shell in CB have a broad

absorption spectrum with dual LSPR peaks at 520 nm and

680 nm. The absorption spectrum shifts only 2–3 nm when

the shell thickness changes from 5 nm to 10 nm because of a

change in the dielectric environment. The major LSPR peak

of nanorods at 680 nm is also well-matched with the absorp-

tion peak of p-DTS(FBTTh2)2 donor.

Fig. 2(a) represents the J-V characteristics of the

p-DTS(FBTTh2)2:PC70BM devices with and without 1 wt. %

of Au nanorods with various silica shell thicknesses under

AM1.5G irradiation at 100 mW/cm2. The concentrations of

Au-silica nanorods are optimized at 1 wt. %. The average pho-

tovoltaic parameters calculated from ten devices for each type

are listed in Table I. The reference device without NPs has an

average PCE of 6.5% 6 0.14% with the open-circuit voltage

(VOC) of 0.77 6 0.01 V, short-circuit current density JSC of

12.01 6 0.27 mA/cm2, and fill factor (FF) of 70.2% 6 0.32%.

After incorporation of 1 wt. % bare Au nanorods, the average

VOC, JSC, FF, and PCE are decreased to 0.72 6 0.01 V,

11.73 6 0.13 mA/cm2, 63.5% 6 0.49%, and 5.4% 6 0.05%,

respectively. The reduction in PCE is similar to that reported in

Ref. 10. Both the reduced FF and VOC suggest that the Au

nanorods may have acted as charge recombination centers.

Upon incorporation of Au-silica nanorods with 5 nm, 7 nm, and

10 nm silica shell, the VOC and FF remain the same while the

JSC increases to 15.14 6 0.35 mA/cm2, 14.53 6 0.26 mA/cm2,

and 14.12 6 0.23 mA/cm2, respectively. The unchanged VOC

and FF suggest that incorporation of silica coating nanorods

does not induce charge recombination. In addition, the

improved JSC indicates that light absorption is enhanced by

incorporation of Au-silica nanorods, which is confirmed by

absorption spectra in Fig. 2(b). Although there are similar

enhancement in absorption for all four types of Au nanorods

embedded in the p-DTS(FBTTh2)2:PC70BM film, the value of

JSC decreases somewhat with the increase of the silica shell

thickness. These results show the importance of having a silica

shell around the Au nanorods and the need to carefully tailor

the silica shell thickness during nanorod synthesis.

In order to study the effect of silica shell on the

enhanced photocurrent in the p-DTS(FBTTh2)2:PC70BM

devices, the enhancement mechanisms including the LSPR

effect and light scattering were investigated. Localized elec-

tric field intensity distributions within the active layer em-

bedded with Au-silica nanorods are simulated by finite-

difference time-domain (FDTD) method.18 The wave is inci-

dent from the top and electric field is polarized parallel to the

FIG. 1. TEM images of Au nanorods with silica shell thickness of (a) 0 nm,

(b) 5 nm, (c) 7 nm, and (d) 10 nm. The scale bars represent 50 nm. (e)

Normalized UV/Vis absorption spectrum of Au-silica nanorods with 5 nm

silica shell in CB solvent.
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longitudinal axis of the nanorod. The electric field intensity

distributions in the active layer embedded with Au-silica

nanorod at 520 nm and 680 nm are shown in Fig. 3 for differ-

ent silica shell thicknesses from 5 nm to 10 nm. From the

simulation, for the same thickness, strong electric field local-

ization is observed which is due to LSPR excited by Au-

silica nanorod. The electric field intensities are also

enhanced around the Au-silica nanorod at both 520 nm and

680 nm. The highly localized electric field corresponds to the

broadband light absorption enhancement in the active layer.

For the 5 nm shell thickness illustrated in Fig. 3(a), there

is significant enhancement of electric field intensity at the

interface of the silica shell and the nearby organic medium

(white dotted line). For the 7 nm shell thickness, the

enhancement pattern in Fig. 3(b) is basically similar to that

of Fig. 3(a) for both 520 nm and 680 nm. However, at the

surface of the silica shell, the electric field intensity enhance-

ment is slightly reduced, which is consistent with the

reduced JSC in Fig. 2(a). When the shell thickness is

increased to 10 nm (Fig. 3(c)), the electric field intensity dis-

tribution at the surface of the Au core is still similar to that

of Figs. 3(a) and 3(b) but the electric field intensity enhance-

ment at the surface of the silica shell is greatly reduced.

Therefore, the electric field intensity at the surface of the

5 nm silica shell is higher and contributes to more light

absorption by organic medium.

Haze factor measurement was performed to examine the

dependence of scattering effects of Au nanorods with various

shell thicknesses in the SM solar cells. Haze factor for transmis-

sion (HT) and reflection (HR) are defined as the ratio between

the diffuse transmission/reflection and the total transmission/

reflection.19 The HT and HR for p-DTS(FBTTh2)2:PC70BM film

with and without Au-silica nanorods are shown in supplemen-

tary material (Fig. S1).16 Upon incorporating the Au-silica

nanorods, there are similar enhancements in HT and HR for Au

nanorods with 0 nm, 5 nm, 7 nm, and 10 nm. It can be seen that

the silica shell thickness has little effect on both HT and HR.

Such enhancements show that the light scattering is increased

in the active layer when incorporating the Au-silica or Au nano-

rods. Taken together, it can be concluded that both LSPR effect

and the scattering effects excited by Au-silica nanorods with

5 nm silica shell attribute to the light absorption enhancement.

This also suggests that for shell thickness of 10 nm or more, the

electric field intensity enhancement in the vicinity of the nano-

rod is negligible and enhancement is dominated by scattering.

As mentioned above, the JSC, VOC, and FF decreased af-

ter incorporation of bare Au nanorods, while the JSC

increased and VOC and FF remained unchanged for Au-silica

nanorods. In order to further understand the effect of silica

shell on the device performance, we studied the recombina-

tion mechanisms influenced by Au nanorods with and with-

out silica shell by measuring the JSC at various light

intensities. Generally, JSC of OSC device follows a power

law dependence on the illumination light intensity, which

can be written as20,21

JSC / PS; (1)

where P is light intensity and S is the exponential factor.

Ideally, the value of S should be 1 for a solar cell without any

bimolecular recombination. The value of S, however, is usu-

ally less than 1 for OSC due to bimolecular recombination

FIG. 2. (a) J-V characteristics of p-DTS(FBTTh2)2:PC70BM BHJ solar cells

incorporated with and without Au nanorods with various silica shell thick-

nesses and (b) UV/Vis absorption spectra of p-DTS(FBTTh2)2:PC70BM BHJ

films incorporated with and without Au nanorods with various silica shell

thicknesses.

TABLE I. Photovoltaic device parameters of SM BHJ devices based on p-DTS(FBTTh2)2:PC70BM with and without 1 wt. % of Au nanorods with various

silica shell thicknesses under 100 mW/cm2 AM1.5G simulated solar irradiation.

Au nanorods shell thickness (nm) VOC(V) JSC (mA/cm2) FF (%) PCE (%)

No NPs 0.77 6 0.01 12.01 6 0.27 70.2 6 0.32 6.5 6 0.14

0 0.72 6 0.01 11.73 6 0.13 63.5 6 0.49 5.4 6 0.05

5 0.77 6 0.01 15.14 6 0.35 70.4 6 0.61 8.2 6 0.12

7 0.77 6 0.01 14.53 6 0.26 70.3 6 0.43 7.8 6 0.12

10 0.77 6 0.01 14.12 6 0.23 70.2 6 0.41 7.6 6 0.10

113306-3 Xu et al. Appl. Phys. Lett. 105, 113306 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:  155.69.4.4

On: Sat, 20 Dec 2014 03:57:03



which is unavoidable in low mobility materials such as or-

ganic solids. From Fig. 4, the value of S¼ 0.913 and

S¼ 0.944 for bare Au nanorods and Au nanorods with 5 nm

silica shell, respectively, were determined by fitting the data

with Eq. (1). A higher value of S indicates that bimolecular

recombination which is likely to occur at the surface of metal-

lic nanorod is reduced for the device with silica coated Au

nanorods. This reduced bimolecular recombination is consist-

ent with the increase in JSC and FF in the device with silica

coated Au nanorod.

In conclusion, we improved the PCE of solution-

processed SM solar cells by incorporation of Au-silica nano-

rods into p-DTS(FBTTh2)2:PC70BM active layer. At the

optimized concentration of 1 wt. % Au-silica nanorods with

5 nm silica shell, JSC and PCE increased by �25% and

�27%, respectively. FDTD simulation reveals that shell

thickness should be thin to enable sufficient localized electric

field intensity outside the silica shell. However, the silica

shell must be present due to the otherwise increased bimolec-

ular recombination at the Au surface as demonstrated by the

light intensity dependence of JSC. PCE enhancements in SM

BHJ solar cells incorporated with nanorods with 5 nm silica

shell is due to both LSPR and scattering effects.
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