2,260 research outputs found

    Quantum anti-Zeno effect without wave function reduction

    Full text link
    We study the measurement-induced enhancement of the spontaneous decay (called quantum anti-Zeno effect) for a two-level subsystem, where measurements are treated as couplings between the excited state and an auxiliary state rather than the von Neumann's wave function reduction. The photon radiated in a fast decay of the atom, from the auxiliary state to the excited state, triggers a quasi-measurement, as opposed to a projection measurement. Our use of the term "quasi-measurement" refers to a "coupling-based measurement". Such frequent quasi-measurements result in an exponential decay of the survival probability of atomic initial state with a photon emission following each quasi-measurement. Our calculations show that the effective decay rate is of the same form as the one based on projection measurements. What is more important, the survival probability of the atomic initial state which is obtained by tracing over all the photon states is equivalent to the survival probability of the atomic initial state with a photon emission following each quasi-measurement to the order under consideration. That is because the contributions from those states with photon number less than the number of quasi-measurements originate from higher-order processes.Comment: 7 pages, 3 figure

    The phylogenetically-related pattern recognition receptors EFR and XA21 recruit similar immune signaling components in monocots and dicots

    Get PDF
    During plant immunity, surface-localized pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs). The transfer of PRRs between plant species is a promising strategy for engineering broad-spectrum disease resistance. Thus, there is a great interest in understanding the mechanisms of PRR-mediated resistance across different plant species. Two well-characterized plant PRRs are the leucine-rich repeat receptor kinases (LRR-RKs) EFR and XA21 from Arabidopsis thaliana (Arabidopsis) and rice, respectively. Interestingly, despite being evolutionary distant, EFR and XA21 are phylogenetically closely related and are both members of the sub-family XII of LRR-RKs that contains numerous potential PRRs. Here, we compared the ability of these related PRRs to engage immune signaling across the monocots-dicots taxonomic divide. Using chimera between Arabidopsis EFR and rice XA21, we show that the kinase domain of the rice XA21 is functional in triggering elf18-induced signaling and quantitative immunity to the bacteria Pseudomonas syringae pv. tomato (Pto) DC3000 and Agrobacterium tumefaciens in Arabidopsis. Furthermore, the EFR:XA21 chimera associates dynamically in a ligand-dependent manner with known components of the EFR complex. Conversely, EFR associates with Arabidopsis orthologues of rice XA21-interacting proteins, which appear to be involved in EFR-mediated signaling and immunity in Arabidopsis. Our work indicates the overall functional conservation of immune components acting downstream of distinct LRR-RK-type PRRs between monocots and dicots

    Effects of quantum gravity on the inflationary parameters and thermodynamics of the early universe

    Full text link
    The effects of generalized uncertainty principle (GUP) on the inflationary dynamics and the thermodynamics of the early universe are studied. Using the GUP approach, the tensorial and scalar density fluctuations in the inflation era are evaluated and compared with the standard case. We find a good agreement with the Wilkinson Microwave Anisotropy Probe data. Assuming that a quantum gas of scalar particles is confined within a thin layer near the apparent horizon of the Friedmann-Lemaitre-Robertson-Walker universe which satisfies the boundary condition, the number and entropy densities and the free energy arising form the quantum states are calculated using the GUP approach. A qualitative estimation for effects of the quantum gravity on all these thermodynamic quantities is introduced.Comment: 15 graghes, 7 figures with 17 eps graph

    Differential regulation of stiffness, topography, and dimension of substrates in rat mesenchymal stem cells

    Get PDF
    The physiological microenvironment of the stem cell niche, including the three factors of stiffness, topography, and dimension, is crucial to stem cell proliferation and differentiation. Although a growing body of evidence is present to elucidate the importance of these factors individually, the interaction of the biophysical parameters of the factors remains insufficiently characterized, particularly for stem cells. To address this issue fully, we applied a micro-fabricated polyacrylamide hydrogel substrate with two elasticities, two topographies, and three dimensions to systematically test proliferation, morphology and spreading, differentiation, and cytoskeletal re-organization of rat bone marrow mesenchymal stem cells (rBMSCs) on twelve cases. An isolated but not combinatory impact of the factors was found regarding the specific functions. Substrate stiffness or dimension is predominant in regulating cell proliferation by fostering cell growth on stiff, unevenly dimensioned substrate. Topography is a key factor for manipulating cell morphology and spreading via the formation of a large spherical shape in a pillar substrate but not in a grooved substrate. Although stiffness leads to osteogenic or neuronal differentiation of rBMSCs on a stiff or soft substrate, respectively, topography or dimension also plays a lesser role in directing cell differentiation. Neither an isolated effect nor a combinatory effect was found for actin or tubulin expression, whereas a seemingly combinatory effect of topography and dimension was found in manipulating vimentin expression. These results further the understandings of stem cell proliferation, morphology, and differentiation in a physiologically mimicking microenvironment

    Observation of a ppb mass threshoud enhancement in \psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) decay

    Full text link
    The decay channel ψπ+πJ/ψ(J/ψγppˉ)\psi^\prime\to\pi^+\pi^-J/\psi(J/\psi\to\gamma p\bar{p}) is studied using a sample of 1.06×1081.06\times 10^8 ψ\psi^\prime events collected by the BESIII experiment at BEPCII. A strong enhancement at threshold is observed in the ppˉp\bar{p} invariant mass spectrum. The enhancement can be fit with an SS-wave Breit-Wigner resonance function with a resulting peak mass of M=186113+6(stat)26+7(syst)MeV/c2M=1861^{+6}_{-13} {\rm (stat)}^{+7}_{-26} {\rm (syst)} {\rm MeV/}c^2 and a narrow width that is Γ<38MeV/c2\Gamma<38 {\rm MeV/}c^2 at the 90% confidence level. These results are consistent with published BESII results. These mass and width values do not match with those of any known meson resonance.Comment: 5 pages, 3 figures, submitted to Chinese Physics

    Genetic and phylogenetic analysis of ten Gobiidae species in China based on amplified fragment length polymorphism (AFLP) analysis

    Get PDF
    To study the genetic and phylogenetic relationship of gobioid fishes in China, the representatives of 10 gobioid fishes from 2 subfamilies in China were examined by amplified fragment length polymorphism (AFLP) analysis. We established 220 AFLP bands for 45 individuals from the 10 species, and the percentage of polymorphic bands was 100%. The percentage of polymorphic loci within species ranged from 3.61 to 58.56%. Chaeturichthys stigmatias showed the greatest percentage of polymorphic loci (58.56%), the highest Nei’s genetic diversity (0.2421 ± 0.2190) and Shannon’s information index (0.3506 ± 0.3092), while Pterogobius zacalles showed the lowest percentage polymorphic loci (3.61%), the lowest Nei’s genetic diversity (0.0150 ± 0.0778) and lowest Shannon’s information index (0.0219 ± 0.1136). The topology of UPGMA tree showed that the individuals from the same species clustered together and the 10 species formed two major clades. One clade consisted Cryptocentrus filifer, P. zacalles, Tridentiger trigonocephalus, Chaeturichthys hexanema, C. stigmatias, Acanthogobius flavimanus and Synechogobius ommaturus, and the other clade consisted Odontamblyopus rubicundus, Trypauchen vagina and Ctenotrypauchen microcephalus. The results agreed with the traditional taxonomy of the morphological characters. AFLP fingerprints were successfully used to study the phylogenetic relationship of the gobioid fishes and it identified species origins of morphologically similar taxa.Key words: Phylogenetic, amplified fragment length polymorphism (AFLP), gobiidae, Amblyopinae, gobiinae

    Advances in small lasers

    Get PDF
    M.T.H was supported by an Australian Research council Future Fellowship research grant for this work. M.C.G. is grateful to the Scottish Funding Council (via SUPA) for financial support.Small lasers have dimensions or modes sizes close to or smaller than the wavelength of emitted light. In recent years there has been significant progress towards reducing the size and improving the characteristics of these devices. This work has been led primarily by the innovative use of new materials and cavity designs. This Review summarizes some of the latest developments, particularly in metallic and plasmonic lasers, improvements in small dielectric lasers, and the emerging area of small bio-compatible or bio-derived lasers. We examine the different approaches employed to reduce size and how they result in significant differences in the final device, particularly between metal- and dielectric-cavity lasers. We also present potential applications for the various forms of small lasers, and indicate where further developments are required.PostprintPeer reviewe

    Measurement of the matrix element for the decay η′→ηπ +π -

    Get PDF
    The Dalitz plot of η⊃′→ηπ⊃+π⊃- decay is studied using (225.2±2.8)×106 J/ψ events collected with the BESIII detector at the BEPCII e⊃+e⊃- collider. With the largest sample of η⊃′ decays to date, the parameters of the Dalitz plot are determined in a generalized and a linear representation. Also, the branching fraction of J/ψ→γη⊃′ is determined to be (4.84±0.03±0.24)×10⊃-3, where the first error is statistical and the second systematic. © 2011 American Physical Society.published_or_final_versio

    Determination of the number of J/ψ events with J/ψ → inclusive decays

    Get PDF
    postprin

    HER2-family signalling mechanisms, clinical implications and targeting in breast cancer.

    Get PDF
    Approximately 20 % of human breast cancers (BC) overexpress HER2 protein, and HER2-positivity is associated with a worse prognosis. Although HER2-targeted therapies have significantly improved outcomes for HER2-positive BC patients, resistance to trastuzumab-based therapy remains a clinical problem. In order to better understand resistance to HER2-targeted therapies in HER2-positive BC, it is necessary to examine HER family signalling as a whole. An extensive literature search was carried out to critically assess the current knowledge of HER family signalling in HER2-positive BC and response to HER2-targeted therapy. Known mechanisms of trastuzumab resistance include reduced receptor-antibody binding (MUC4, p95HER2), increased signalling through alternative HER family receptor tyrosine kinases (RTK), altered intracellular signalling involving loss of PTEN, reduced p27kip1, or increased PI3K/AKT activity and altered signalling via non-HER family RTKs such as IGF1R. Emerging strategies to circumvent resistance to HER2-targeted therapies in HER2-positive BC include co-targeting HER2/PI3K, pan-HER family inhibition, and novel therapies such as T-DM1. There is evidence that immunity plays a key role in the efficacy of HER-targeted therapy, and efforts are being made to exploit the immune system in order to improve the efficacy of current anti-HER therapies. With our rapidly expanding understanding of HER2 signalling mechanisms along with the repertoire of HER family and other targeted therapies, it is likely that the near future holds further dramatic improvements to the prognosis of women with HER2-positive BC
    corecore