5,674 research outputs found

    Theory of Fano-Kondo effect of transport properties through quantum dots

    Full text link
    The Fano-Kondo effect in zero-bias conductance is investigated based on a theoretical model for the T-shaped quantum dot. The conductance as a function of the gate voltage is generally characterized by a Fano asymmetric parameter q. With varying temperature the conductance shows a crossover between the high and low temperature regions compared with the Kondo temperature T_K: two Fano asymmetric peaks at high temperatures and the Fano-Kondo plateau inside a Fano peak at low temperatures. Temperature dependence of conductance is calculated numerically by the Finite temperature density matrix renormalization group method (FT-DMRG).Comment: 8 pages, 7 figure

    Formation of Organic Color Centers in Air-Suspended Carbon Nanotubes Using Vapor-Phase Reaction

    Full text link
    Organic color centers in single-walled carbon nanotubes have demonstrated exceptional ability to generate single photons at room temperature in the telecom range. Combining the color centers with pristine air-suspended tubes would be desirable for improved performance, but all current synthetic methods occur in solution which makes them incompatible. Here we demonstrate formation of color centers in air-suspended nanotubes using vapor-phase reaction. Functionalization is directly verified on the same nanotubes by photoluminescence spectroscopy, with unambiguous statistics from more than a few thousand individual nanotubes. The color centers show a strong diameter-dependent emission intensity, which can be explained with a theoretical model for chemical reactivity taking into account strain along the tube curvature. We are also able to estimate the defect density by comparing the experiments with simulations based on a one-dimensional diffusion equation, whereas the analysis of diameter dependent peak energies gives insight to the nature of the dopant states. Time-resolved measurements show a longer lifetime for color center emission compared to E11_{11} exciton states. Our results highlight the influence of the tube structure on vapor-phase reactivity and emission properties, providing guidelines for development of high-performance near-infrared quantum light sources.Comment: 8 pages, 6 figure

    Critical review of [K- ppn] bound states

    Get PDF
    We make a thorough study of the process of three body kaon absorption in nuclei, in connection with a recent FINUDA experiment which claims the existence of a deeply bound kaonic state from the observation of a peak in the Lambda d invariant mass distribution following K- absorption on Li6. We show that the peak is naturally explained in terms of K- absorption from three nucleons leaving the rest as spectators. We can also reproduce all the other observables measured in the same experiment and used to support the hypothesis of the deeply bound kaon state. Our study also reveals interesting aspects of kaon absorption in nuclei, a process that must be understood in order to make progress in the search for K- deeply bound states in nuclei.Comment: 8 pages, 7 figures. New section "Empirical qualitative discussion of the strength of the reaction" with one new figure is added. Published in PR

    Efficient magneto-optical trapping of Yb atoms with a violet laser diode

    Full text link
    We report the first efficient trapping of rare-earth Yb atoms with a high-power violet laser diode (LD). An injection-locked violet LD with a 25 mW frequency-stabilized output was used for the magneto-optical trapping (MOT) of fermionic as well as bosonic Yb isotopes. A typical number of 4×1064\times 10^6 atoms for 174^{174}Yb with a trap density of 1×108/\sim 1\times10^8/cm3^3 was obtained. A 10 mW violet external-cavity LD (ECLD) was used for the one-dimensional (1D) slowing of an effusive Yb atomic beam without a Zeeman slower resulting in a 35-fold increase in the number of trapped atoms. The overall characteristics of our compact violet MOT, e.g., the loss time of 1 s, the loading time of 400 ms, and the cloud temperature of 0.7 mK, are comparable to those in previously reported violet Yb MOTs, yet with a greatly reduced cost and complexity of the experiment.Comment: 5 pages, 3 figures, 1 table, Phys. Rev. A (to be published

    The Heavy Photon Search beamline and its performance

    Full text link
    The Heavy Photon Search (HPS) is an experiment to search for a hidden sector photon, aka a heavy photon or dark photon, in fixed target electroproduction at the Thomas Jefferson National Accelerator Facility (JLab). The HPS experiment searches for the e+^+e^- decay of the heavy photon with bump hunt and detached vertex strategies using a compact, large acceptance forward spectrometer, consisting of a silicon microstrip detector (SVT) for tracking and vertexing, and a PbWO4_4 electromagnetic calorimeter for energy measurement and fast triggering. To achieve large acceptance and good vertexing resolution, the first layer of silicon detectors is placed just 10 cm downstream of the target with the sensor edges only 500 μ\mum above and below the beam. Placing the SVT in such close proximity to the beam puts stringent requirements on the beam profile and beam position stability. As part of an approved engineering run, HPS took data in 2015 and 2016 at 1.05 GeV and 2.3 GeV beam energies, respectively. This paper describes the beam line and its performance during that data taking

    Sudden switch of generalized Lieb-Robinson velocity in a transverse field Ising spin chain

    Full text link
    The Lieb-Robinson theorem states that the speed at which the correlations between two distant nodes in a spin network can be built through local interactions has an upper bound, which is called the Lieb-Robinson velocity. Our central aim is to demonstrate how to observe the Lieb-Robinson velocity in an Ising spin chain with a strong transverse field. We adopt and compare four correlation measures for characterizing different types of correlations, which include correlation function, mutual information, quantum discord, and entanglement of formation. We prove that one of correlation functions shows a special behavior depending on the parity of the spin number. All the information-theoretical correlation measures demonstrate the existence of the Lieb-Robinson velocity. In particular, we find that there is a sudden switch of the Lieb-Robinson speed with the increasing of the number of spin

    Solutions of the Strominger System via Stable Bundles on Calabi-Yau Threefolds

    Full text link
    We prove that a given Calabi-Yau threefold with a stable holomorphic vector bundle can be perturbed to a solution of the Strominger system provided that the second Chern class of the vector bundle is equal to the second Chern class of the tangent bundle. If the Calabi-Yau threefold has strict SU(3) holonomy then the equations of motion derived from the heterotic string effective action are also satisfied by the solutions we obtain.Comment: 19 pages, late
    corecore