1,058 research outputs found

    Testing interactive effects of global environmental changes on soil nitrogen cycling

    Get PDF
    Responses of soil nitrogen (N) cycling to simultaneous and potentially interacting global environmental changes are uncertain. Here, we investigated the combined effects of elevated CO2, warming, increased precipitation and enhanced N supply on soil N cycling in an annual grassland ecosystem as part of the Jasper Ridge Global Change Experiment (CA, USA). This field experiment included four treatments-CO2, temperature, precipitation, nitrogen-with two levels per treatment (ambient and elevated), and all their factorial combinations replicated six times. We collected soil samples after 7 and 8 years of treatments, and measured gross rates of N mineralization, N immobilization and nitrification, along with potential rates of ammonia oxidation, nitrite oxidation and denitrification. We also determined the main drivers of these microbial activities (soil ammonium and nitrate concentrations, soil moisture, soil temperature, soil pH, and soil CO2 efflux, as an indicator of soil heterotrophic activity). We found that gross N mineralization responded to the interactive effects of the CO2, precipitation and N treatments: N addition increased gross N mineralization when CO2 and precipitation were either both at ambient or both at elevated levels. However, we found limited evidence for interactions among elevated CO2, warming, increased precipitation, and enhanced N supply on the other N cycling processes examined: statistically significant interactions, when found, tended not to persist across multiple dates. Soil N cycling responded mainly to single-factor effects: long-term N addition increased gross N immobilization, potential ammonia oxidation and potential denitrification, while increased precipitation depressed potential nitrite oxidation and increased potential ammonia oxidation and potential denitrification. In contrast, elevated CO2 and modest warming did not significantly affect any of these microbial N transformations. These findings suggest that global change effects on soil N cycling are primarily additive, and therefore generally predictable from single factor studies

    All-dielectric photonic metamaterials operating beyond the homogenization regime

    Get PDF
    Photonic metamaterials made of graded photonic crystals operating near the bandgap frequency region are proposed for field manipulation around l=1.5ÎĽm. Proof-of-concept structures have been studied using Hamiltonian optics and FDTD simulation, fabricated, and characterized using farfield optical measurements. Experimental results are in good agreement with predictions, showing the interest of graded photonic crystals as an (ultra-low loss) alternative solution to the use of metamaterials combining dielectric and metallic materials with sub-wavelength unit cells

    Ge-rich graded-index SiGe alloys: exploring a versatile platform for mid-IR photonics

    Get PDF
    International audienceIn this paper, the recent progress on a new Ge-rich SiGe platform for mid-IR integrated photonics is presented. Low-loss spiral waveguides working over a broadband wavelength range are discussed, followed by a sensing proof-of-concept using a standalone photoresist with a known spectral absorption pattern. In addition, the development of new mid-IR interferometric devices for wavelength filtering and enhancement of the light-matter interaction are presented. Finally, efficient designs to exploit the third-order nonlinearities in these Ge-rich SiGe waveguides at mid-IR wavelengths are shown. The demonstration of these key building blocks will pave the way towards the implementation of new mid-IR photonic integrated systems with multiple functionalities

    Near-field imaging of single walled carbon nanotubes emitting in the telecom wavelength range

    Get PDF
    International audienceHybrid systems based on carbon nanotubes emitting in the telecom wavelength range and Si-photonic platforms are promising candidates for developing integrated photonic circuits. Here, we consider semiconducting single walled carbon nanotubes (s-SWNTs) emitting around 1300 nm or 1550 nm wavelength. The nanotubes are deposited on quartz substrate for mapping their photoluminescence in hyperspectral near-field microscopy. This method allows for a sub-wavelength resolution in detecting the spatial distribution of the emission of single s-SWNTs at room temperature. Optical signature delocalized over several micrometers is observed, thus denoting the high quality of the produced carbon nanotubes on a wide range of tube diameters. Noteworthy, the presence of both nanotube bundles and distinct s-SWNT chiralities is uncovered

    OPA1: 516 unique variants and 831 patients registered in an updated centralized Variome database

    Get PDF
    BACKGROUND: The dysfunction of OPA1, a dynamin GTPase involved in mitochondrial fusion, is responsible for a large spectrum of neurological disorders, each of which includes optic neuropathy. The database dedicated to OPA1 ( https://www.lovd.nl/OPA1 ), created in 2005, has now evolved towards a centralized and more reliable database using the Global Variome shared Leiden Open-source Variation Database (LOVD) installation. RESULTS: The updated OPA1 database, which registers all the patients from our center as well as those reported in the literature, now covers a total of 831 patients: 697 with isolated dominant optic atrophy (DOA), 47 with DOA "plus", and 83 with asymptomatic or unclassified DOA. It comprises 516 unique OPA1 variants, of which more than 80% (414) are considered pathogenic. Full clinical data for 118 patients are documented using the Human Phenotype Ontology, a standard vocabulary for referencing phenotypic abnormalities. Contributors may now make online submissions of phenotypes related to OPA1 mutations, giving clinical and molecular descriptions together with detailed ophthalmological and neurological data, according to an international thesaurus. CONCLUSIONS: The evolution of the OPA1 database towards the LOVD, using unified nomenclature, should ensure its interoperability with other databases and prove useful for molecular diagnoses based on gene-panel sequencing, large-scale mutation statistics, and genotype-phenotype correlations

    Quantum Quench from a Thermal Initial State

    Full text link
    We consider a quantum quench in a system of free bosons, starting from a thermal initial state. As in the case where the system is initially in the ground state, any finite subsystem eventually reaches a stationary thermal state with a momentum-dependent effective temperature. We find that this can, in some cases, even be lower than the initial temperature. We also study lattice effects and discuss more general types of quenches.Comment: 6 pages, 2 figures; short published version, added references, minor change
    • …
    corecore