290 research outputs found

    Evangelical Visitor- October 2, 1911. Vol. XXV. No. 20.

    Get PDF
    Evangelical Visitor published in Harrisburg, Pa., for the exposition of true, practical piety and devoted to the spread of evangelical truths and the unity of the church. Published in the interest of the church of the Brethren in Christ on October 2, 1911. Vol. XXV. No. 20

    Radio and optical intra-day variability observations of five blazars

    Full text link
    We carried out a pilot campaign of radio and optical band intra-day variability (IDV) observations of five blazars (3C66A, S5 0716+714, OJ287, B0925+504, and BL Lacertae) on December 18--21, 2015 by using the radio telescope in Effelsberg (Germany) and several optical telescopes in Asia, Europe, and America. After calibration, the light curves from both 5 GHz radio band and the optical R band were obtained, although the data were not smoothly sampled over the sampling period of about four days. We tentatively analyse the amplitudes and time scales of the variabilities, and any possible periodicity. The blazars vary significantly in the radio (except 3C66A and BL Lacertae with only marginal variations) and optical bands on intra- and inter-day time scales, and the source B0925+504 exhibits a strong quasi-periodic radio variability. No significant correlation between the radio- and optical-band variability appears in the five sources, which we attribute to the radio IDV being dominated by interstellar scintillation whereas the optical variability comes from the source itself. However, the radio- and optical-band variations appear to be weakly correlated in some sources and should be investigated based on well-sampled data from future observations.Comment: 6 pages, 6 figures, accepted by MNRA

    Quantum computation with mesoscopic superposition states

    Get PDF
    We present a strategy to engineer a simple cavity-QED two-bit universal quantum gate using mesoscopic distinct quantum superposition states. The dissipative effect on decoherence and amplitude damping of the quantum bits are analyzed and the critical parameters are presented.Comment: 9 pages, 5 Postscript and 1 Encapsulated Postscript figures. To be published in Phys. Rev.

    Toward scalable quantum computation with cavity QED systems

    Get PDF
    We propose a scheme for quantum computing using high-Q cavities in which the qubits are represented by single cavity modes restricted in the space spanned by the two lowest Fock states. We show that single qubit operations and universal multiple qubit gates can be implemented using atoms sequentially crossing the cavities.Comment: 14 pages, 8 figure

    Generating and probing a two-photon Fock state with a single atom in a cavity

    Get PDF
    A two-photon Fock state is prepared in a cavity sustaining a "source mode " and a "target mode", with a single circular Rydberg atom. In a third-order Raman process, the atom emits a photon in the target while scattering one photon from the source into the target. The final two-photon state is probed by measuring by Ramsey interferometry the cavity light shifts induced by the target field on the same atom. Extensions to other multi-photon processes and to a new type of micromaser are briefly discussed

    Genetic study of atypical femoral fractures using exome sequencing in three affected sisters and three unrelated patients

    Full text link
    Objectives: Atypical femoral fractures (AFF) are rare, often related to long-term bisphosphonate (BPs) tre- atment. Their pathogenic mechanisms are not precisely known and there is no evidence to identify patients with a high risk of AFF. The aim of this work is to study the genetic bases of AFFs. Material and methods: Whole-exome sequencing was carried out on 3 sisters and 3 unrelated additional patients, all treated with BPs for more than 5 years. Low frequency, potentially pathogenic variants sha- red by the 3 sisters, were selected, were selected and a network of gene and protein interactions was constructed with the data found. Results: We identified 37 rare variants (in 34 genes) shared by the 3 sisters, some not previously descri- bed. The most striking variant was the p.Asp188Tyr mutation in the enzyme geranylgeranyl pyrophos- phate synthase (encoded by the GGPS1 gene), from the mevalonate pathway and essential for osteoclast function. Another noteworthy finding was two mutations (one in the 3 sisters and one in an unrelated patient) in the CYP1A1 gene, involved in the metabolism of steroids. We identified other variants that could also be involved in the susceptibility to AFFs or in the underlying osteoporotic phenotype, such as those present in the SYDE2, NGEF, COG4 and FN1 genes. Conclusions: Our data are compatible with a model where the accumulation of susceptibility variants could participate in the genetic basis of AFFs

    Quantum computers in phase space

    Full text link
    We represent both the states and the evolution of a quantum computer in phase space using the discrete Wigner function. We study properties of the phase space representation of quantum algorithms: apart from analyzing important examples, such as the Fourier Transform and Grover's search, we examine the conditions for the existence of a direct correspondence between quantum and classical evolutions in phase space. Finally, we describe how to directly measure the Wigner function in a given phase space point by means of a tomographic method that, itself, can be interpreted as a simple quantum algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev

    Single Atom and Two Atom Ramsey Interferometry with Quantized Fields

    Get PDF
    Implications of field quantization on Ramsey interferometry are discussed and general conditions for the occurrence of interference are obtained. Interferences do not occur if the fields in two Ramsey zones have precise number of photons. However in this case we show how two atom (like two photon) interferometry can be used to discern a variety of interference effects as the two independent Ramsey zones get entangled by the passage of first atom. Generation of various entangled states like |0,2>+|2,0> are discussed and in far off resonance case generation of entangled state of two coherent states is discussed.Comment: 20 pages, 5 figures, revised version. submitted to Phys. Rev.

    Exchange bias effect in alloys and compounds

    Full text link
    The phenomenology of exchange bias effects observed in structurally single-phase alloys and compounds but composed of a variety of coexisting magnetic phases such as ferromagnetic, antiferromagnetic, ferrimagnetic, spin-glass, cluster-glass and disordered magnetic states are reviewed. The investigations on exchange bias effects are discussed in diverse types of alloys and compounds where qualitative and quantitative aspects of magnetism are focused based on macroscopic experimental tools such as magnetization and magnetoresistance measurements. Here, we focus on improvement of fundamental issues of the exchange bias effects rather than on their technological importance

    Decoherence control in microwave cavities

    Full text link
    We present a scheme able to protect the quantum states of a cavity mode against the decohering effects of photon loss. The scheme preserves quantum states with a definite parity, and improves previous proposals for decoherence control in cavities. It is implemented by sending single atoms, one by one, through the cavity. The atomic state gets first correlated to the photon number parity. The wrong parity results in an atom in the upper state. The atom in this state is then used to inject a photon in the mode via adiabatic transfer, correcting the field parity. By solving numerically the exact master equation of the system, we show that the protection of simple quantum states could be experimentally demonstrated using presently available experimental apparatus.Comment: 13 pages, RevTeX, 8 figure
    corecore