We represent both the states and the evolution of a quantum computer in phase
space using the discrete Wigner function. We study properties of the phase
space representation of quantum algorithms: apart from analyzing important
examples, such as the Fourier Transform and Grover's search, we examine the
conditions for the existence of a direct correspondence between quantum and
classical evolutions in phase space. Finally, we describe how to directly
measure the Wigner function in a given phase space point by means of a
tomographic method that, itself, can be interpreted as a simple quantum
algorithm.Comment: 16 pages, 7 figures, to appear in Phys Rev