758 research outputs found

    Scale-Invariance and the Strong Coupling Problem

    Full text link
    The effective theory of adiabatic fluctuations around arbitrary Friedmann-Robertson-Walker backgrounds - both expanding and contracting - allows for more than one way to obtain scale-invariant two-point correlations. However, as we show in this paper, it is challenging to produce scale-invariant fluctuations that are weakly coupled over the range of wavelengths accessible to cosmological observations. In particular, requiring the background to be a dynamical attractor, the curvature fluctuations are scale-invariant and weakly coupled for at least 10 e-folds only if the background is close to de Sitter space. In this case, the time-translation invariance of the background guarantees time-independent n-point functions. For non-attractor solutions, any predictions depend on assumptions about the evolution of the background even when the perturbations are outside of the horizon. For the simplest such scenario we identify the regions of the parameter space that avoid both classical and quantum mechanical strong coupling problems. Finally, we present extensions of our results to backgrounds in which higher-derivative terms play a significant role.Comment: 17 pages + appendices, 3 figures; v2: typos fixe

    Developing a rapid method for 3-dimensional urban morphology extraction using open-source data

    Get PDF
    Available and accessible three-dimensional (3D) urban morphology data have become essential for extensive academic research on built-up environments and urban climates. A rapid and consistent methodology for extracting urban morphology information is urgently needed for sustainable urban development in global cities, particularly given future trends of rapid urbanization. However, there is still a lack of generally applicable methods that use open-source data in this context. In this study, we developed a simple and highly efficient method for acquiring 3D urban morphology information using open-source data. Building footprints were acquired from the Maps Static application programming interface. Building heights were extracted from an open digital surface model, i.e., the ALOS World 3D model with a resolution of 30 m (AW3D30). Thereafter, urban morphological parameters, including the sky view factor, building coverage ratio, building volume density, and frontal area density, were calculated based on the retrieved building footprints and building heights. The proposed method was applied to extract the 3D urban morphology of Hong Kong, a city with a complex urban environment and a highly mixed geographical context. The results show a usable accuracy and wide applicability for the newly proposed method

    A Field Range Bound for General Single-Field Inflation

    Full text link
    We explore the consequences of a detection of primordial tensor fluctuations for general single-field models of inflation. Using the effective theory of inflation, we propose a generalization of the Lyth bound. Our bound applies to all single-field models with two-derivative kinetic terms for the scalar fluctuations and is always stronger than the corresponding bound for slow-roll models. This shows that non-trivial dynamics can't evade the Lyth bound. We also present a weaker, but completely universal bound that holds whenever the Null Energy Condition (NEC) is satisfied at horizon crossing.Comment: 16 page

    Intrinsic thermal vibrations of suspended doubly clamped single-wall carbon nanotubes

    Full text link
    We report the observation of thermally driven mechanical vibrations of suspended doubly clamped carbon nanotubes, grown by chemical vapor deposition (CVD). Several experimental procedures are used to suspend carbon nanotubes. The vibration is observed as a blurring in images taken with a scanning electron microscope. The measured vibration amplitudes are compared with a model based on linear continuum mechanics.Comment: pdf including figures, see: http://www.unibas.ch/phys-meso/Research/Papers/2003/NT-Thermal-Vibrations.pd

    WUDAPT: Facilitating advanced urban canopy modeling for weather, climate and air quality applications

    Get PDF
    Environmental issues and impacts to society will be exacerbated with increased population, diminishing resources and the prospects for extreme weather events and climate changes. Current community-based models available for weather, climate and air quaity applications are powerful state-of-science modeling systems, which, with careful considerations, can be employed to address the impact of these issues fo urban areas. Given the complex and high degree of spatial inhomogeneity of the underlying surface area we will review mesh size, appropriate multi-scale science and morphological descriptions and their data requirements including unique city specific gridded morphology and material composition for their forecasting and climate applications. For this presentation, we discuss, describe and show examples from an ongoing but preliminary prototypic collaborative effort, whose design bases is to provide the experience and recommendations toward extending the scope of the National Urban Database and Access Portal Tools (NUDAPT) to worldwide coverage (WUDAPT). WUDAPT would thus provide requisite gridded data for urban applications of advanced forecast and climate models throughout the world. Strategically, the prototypic efforts will be designed to provide proven protocols for the facilitaton of the data gathering and processing based on available remote sensing and ground-based sampling. Tactically, we employ an iterative approach first obtaining coarse gridded Local Climate Zone (LCZ) classification derived from available Web-based products such as Google-Earth, and Landsat satellite magery. Further sub-class discretization of LCZs and the application of GeoWiki technology facilitates further refinements and ground truthing to yield the desired gridded building morphological distribution parameters and their material composition. Local experts would be encouraged to become involved to ensure factors unique to their area in the world would be incorporated. Finally, given that model applications may require data with different grid resolution we present an outline that employs the new and powerful Multiple Resolution Analyses scheme that can address this need within the scope of WUDAPT

    Off-Forward Parton Distributions

    Full text link
    Recently, there have been some interesting developments involving off-forward parton distributions of the nucleon, deeply virtual Compton scattering, and hard diffractive vector-meson production. These developments are triggered by the realization that the off-forward distributions contain information about the internal spin structure of the nucleon and that diffractive electroproduction of vector mesons depends on these unconventional distributions. This paper gives a brief overview of the recent developments

    PPPC 4 DM ID: A Poor Particle Physicist Cookbook for Dark Matter Indirect Detection

    Full text link
    We provide ingredients and recipes for computing signals of TeV-scale Dark Matter annihilations and decays in the Galaxy and beyond. For each DM channel, we present the energy spectra of electrons and positrons, antiprotons, antideuterons, gamma rays, neutrinos and antineutrinos e, mu, tau at production, computed by high-statistics simulations. We estimate the Monte Carlo uncertainty by comparing the results yielded by the Pythia and Herwig event generators. We then provide the propagation functions for charged particles in the Galaxy, for several DM distribution profiles and sets of propagation parameters. Propagation of electrons and positrons is performed with an improved semi-analytic method that takes into account position-dependent energy losses in the Milky Way. Using such propagation functions, we compute the energy spectra of electrons and positrons, antiprotons and antideuterons at the location of the Earth. We then present the gamma ray fluxes, both from prompt emission and from Inverse Compton scattering in the galactic halo. Finally, we provide the spectra of extragalactic gamma rays. All results are available in numerical form and ready to be consumed.Comment: 57 pages with many figures and tables. v4: updated to include a 125 higgs boson, computation and discussion of extragalactic spectra corrected, some other typos fixed; all these corrections and updates are reflected on the numerical ingredients available at http://www.marcocirelli.net/PPPC4DMID.html they correspond to Release 2.

    Accounting uncertainty for spatial modeling of greenhouse gas emissions in the residential sector: fuel combustion and heat production.

    Get PDF
    Energy consumption in households has a great potential for energy savings as well as for greenhouse gas emission reduction. As national inventory reports provide estimates at only a country or regional level, we have developed a new GIS approach that increases the resolution of emission inventories. We consider stationary emission sources, such as fossil fuel combustion and heat production for household energy needs that cover energy demand for cooking, water and space heating. We estimate the spatial emissions of greenhouse gases based on IPCC guidelines using official statistics on fuel consumption and spatial data about population density. The heating degree-day method was then used to determine the climatic conditions and spatial variability in energy demand. The results of the spatial inventory are obtained for settlements that are presented as area-type emission sources in a geospatial database. The uncertainties in the inventory results are estimated using a Monte Carlo method. The results show that uncertainties in greenhouse gas emissions at the regional level are significantly higher than at the country level although the uncertainty of emissions in CO2-equivalent does not exceed 17.0%

    Direct, Indirect and Collider Detection of Neutralino Dark Matter In SUSY Models with Non-universal Higgs Masses

    Full text link
    In supersymmetric models with gravity-mediated SUSY breaking, universality of soft SUSY breaking sfermion masses m_0 is motivated by the need to suppress unwanted flavor changing processes. The same motivation, however, does not apply to soft breaking Higgs masses, which may in general have independent masses from matter scalars at the GUT scale. We explore phenomenological implications of both the one-parameter and two-parameter non-universal Higgs mass models (NUHM1 and NUHM2), and examine the parameter ranges compatible with Omega_CDM h^2, BF(b --> s,gamma) and (g-2)_mu constraints. In contrast to the mSUGRA model, in both NUHM1 and NUHM2 models, the dark matter A-annihilation funnel can be reached at low values of tan(beta), while the higgsino dark matter annihilation regions can be reached for low values of m_0. We show that there may be observable rates for indirect and direct detection of neutralino cold dark matter in phenomenologically aceptable ranges of parameter space. We also examine implications of the NUHM models for the Fermilab Tevatron, the CERN LHC and a Sqrt(s)=0.5-1 TeV e+e- linear collider. Novel possibilities include: very light s-top_R, s-charm_R squark and slepton_L masses as well as light charginos and neutralinos and H, A and H^+/- Higgs bosons.Comment: LaTeX, 48pages, 26 Figures. The version with high resolution Figures is available at http://hep.pa.msu.edu/belyaev/public/projects/nuhm/nuhm.p
    corecore