3,626 research outputs found

    Anaerobic digestion of fungally pre-treated wine distillery wastewater

    Get PDF
    The combination of fungal pre-treatment with Trametes pubescens and anaerobic digestion were tested for the removal of chemical oxygen demand (COD) and phenolic compounds from wine distillery wastewater. The COD removal efficiency after fungal pre-treatment reached 53.3%. During digestion, pH buffering was achieved using CaCO3 and K2HPO4. This provided a stable environment inside digester for efficient and time-independent COD removal. The total COD removal efficiency reached 99.5%, and the system proved able to eliminate shock COD loads, as indicated by the concentrations of sludge and volatile fatty acids. Complex changes of phenolic compounds are suspected in anaerobic digestionsystem, and are investigated further

    The Deuterium to Hydrogen Abundance Ratio Towards the QSO SDSS1558-0031

    Get PDF
    We present a measurement of the D/H abundance ratio in a metal-poor damped Lyman alpha (DLA) system along the sightline of QSO SDSS1558-0031. The DLA system is at redshift z = 2.70262, has a neutral column density of log(NHI)=20.67+/-0.05 cm^2, and a gas-phase metallicity [O/H]= -1.49 which indicates that deuterium astration is negligible. Deuterium absorption is observed in multiple Lyman series with a column density of log(NDI)=16.19+/-0.04 cm^2, best constrained by the deuterium Lyman-11 line. We measure log(D/H) = -4.48+/-0.06, which when combined with previous measurements along QSO sightlines gives a best estimate of log(D/H) = -4.55+/-0.04, where the 1-sigma error estimate comes from a jackknife analysis of the weighted means. Using the framework of standard big bang nucleosynthesis, this value of D/H translates into a baryon density of Omega_b h^2 = 0.0213 +/- 0.0013 +/- 0.0004 where the error terms represent the 1-sigma errors from D/H and the uncertainties in the nuclear reaction rates respectively. Combining our new measurement with previous measurements of D/H, we no longer find compelling evidence for a trend of D/H with NHI.Comment: 13 pages, 3 figures, 1 table. Accepted to the Astrophysical Journal Letter

    Effective Actions, Boundaries and Precision Calculations of Casimir Energies

    Full text link
    We perform the matching required to compute the leading effective boundary contribution to the QED lagrangian in the presence of a conducting surface, once the electron is integrated out. Our result resolves a confusion in the literature concerning the interpretation of the leading such correction to the Casimir energy. It also provides a useful theoretical laboratory for brane-world calculations in which kinetic terms are generated on the brane, since a lot is known about QED near boundaries.Comment: 5 pages. revtex; Added paragraphs describing finite-conductivity effects and effects due to curvatur

    Fibre Inflation: Observable Gravity Waves from IIB String Compactifications

    Full text link
    We introduce a simple string model of inflation, in which the inflaton field can take trans-Planckian values while driving a period of slow-roll inflation. This leads naturally to a realisation of large field inflation, inasmuch as the inflationary epoch is well described by the single-field scalar potential V=V0(34eφ^/3)V = V_0 (3-4 e^{-\hat\varphi/\sqrt{3}}). Remarkably, for a broad class of vacua all adjustable parameters enter only through the overall coefficient V0V_0, and in particular do not enter into the slow-roll parameters. Consequently these are determined purely by the number of \e-foldings, NeN_e, and so are not independent: ε32η2\varepsilon \simeq \frac32 \eta^2. This implies similar relations among observables like the primordial scalar-to-tensor amplitude, rr, and the scalar spectral tilt, nsn_s: r6(ns1)2r \simeq 6(n_s - 1)^2. NeN_e is itself more model-dependent since it depends partly on the post-inflationary reheat history. In a simple reheating scenario a reheating temperature of Trh109T_{rh}\simeq 10^{9} GeV gives Ne58N_e\simeq 58, corresponding to ns0.970n_s\simeq 0.970 and r0.005r\simeq 0.005, within reach of future observations. The model is an example of a class that arises naturally in the context of type IIB string compactifications with large-volume moduli stabilisation, and takes advantage of the generic existence there of Kahler moduli whose dominant appearance in the scalar potential arises from string loop corrections to the Kahler potential. The inflaton field is a combination of Kahler moduli of a K3-fibered Calabi-Yau manifold. We believe there are likely to be a great number of models in this class -- `high-fibre models' -- in which the inflaton starts off far enough up the fibre to produce observably large primordial gravity waves.Comment: Extended calculations beyond the leading approximations, including numerical integrations of multi-field evolution; Display an example with r=0.01r = 0.01; Simplify the discussion of large fields; Corrected minor errors and typos; Added references; 41 pages LaTeX, 25 figure

    DBI Lifshitz Inflation

    Full text link
    A new model of DBI inflation is introduced where the mobile brane, the inflaton field, is moving relativistically inside a Lifshitz throat with an arbitrary anisotropic scaling exponent zz. After dimensional reduction to four dimension the general covariance is broken explicitly both in the matter and the gravitational sectors. The general action for the metric and matter field perturbations are obtained and it is shown to be similar to the classifications made in the effective field theory of inflation literature.Comment: Version 3: minor typos corrected, the JCAP published versio

    Dynamical Fine Tuning in Brane Inflation

    Full text link
    We investigate a novel mechanism of dynamical tuning of a flat potential in the open string landscape within the context of warped brane-antibrane inflation in type IIB string theory. Because of competing effects between interactions with the moduli stabilizing D7-branes in the warped throat and anti-D3-branes at the tip, a stack of branes gives rise to a local minimum of the potential, holding the branes high up in the throat. As branes successively tunnel out of the local minimum to the bottom of the throat the potential barrier becomes lower and is eventually replaced by a flat inflection point, around which the remaining branes easily inflate. This dynamical flattening of the inflaton potential reduces the need to fine tune the potential by hand, and also leads to successful inflation for a larger range of inflaton initial conditions, due to trapping in the local minimum.Comment: 23 pages, 9 figures. v2: Updated D3-dependence in potential, small changes to numerical result

    Fields Annihilation and Particles Creation in DBI inflation

    Full text link
    We consider a model of DBI inflation where two stacks of mobile branes are moving ultra relativistically in a warped throat. The stack closer to the tip of the throat is annihilated with the background anti-branes while inflation proceeds by the second stack. The effects of branes annihilation and particles creation during DBI inflation on the curvature perturbations power spectrum and the scalar spectral index are studied. We show that for super-horizon scales, modes which are outside the sound horizon at the time of branes collision, the spectral index has a shift to blue spectrum compared to the standard DBI inflation. For small scales the power spectrum approaches to its background DBI inflation value with the decaying superimposed oscillatory modulations.Comment: First revision: minor changes, the background spectral index is corrected, new references are added. Second revision: minor changes, new references are added, accepted for publication in JCA

    Dirac Born Infeld (DBI) Cosmic Strings

    Get PDF
    Motivated by brane physics, we consider the non-linear Dirac-Born-Infeld (DBI) extension of the Abelian-Higgs model and study the corresponding cosmic string configurations. The model is defined by a potential term, assumed to be of the mexican hat form, and a DBI action for the kinetic terms. We show that it is a continuous deformation of the Abelian-Higgs model, with a single deformation parameter depending on a dimensionless combination of the scalar coupling constant, the vacuum expectation value of the scalar field at infinity, and the brane tension. By means of numerical calculations, we investigate the profiles of the corresponding DBI-cosmic strings and prove that they have a core which is narrower than that of Abelian-Higgs strings. We also show that the corresponding action is smaller than in the standard case suggesting that their formation could be favoured in brane models. Moreover we show that the DBI-cosmic string solutions are non-pathological everywhere in parameter space. Finally, in the limit in which the DBI model reduces to the Bogomolnyi-Prasad-Sommerfield (BPS) Abelian-Higgs model, we find that DBI cosmic strings are no longer BPS: rather they have positive binding energy. We thus argue that, when they meet, two DBI strings will not bind with the corresponding formation of a junction, and hence that a network of DBI strings is likely to behave as a network of standard cosmic strings.Comment: 25 pages, 12 figure

    Influence of He++ and Shock Geometry on Interplanetary Shocks in the Solar Wind: 2D Hybrid Simulations

    Get PDF
    After protons, alpha particles (He++^{++}) are the most important ion species in the solar wind, constituting typically about 5\% of the total ion number density. Due to their different charge-to-mass ratio protons and He++^{++} particles are accelerated differently when they cross the electrostatic potential in a collisionless shock. This behavior can produce changes in the velocity distribution function (VDF) for both species generating anisotropy in the temperature which is considered to be the energy source for various phenomena such as ion cyclotron and mirror mode waves. How these changes in temperature anisotropy and shock structure depend on the percentage of He++^{++} particles and the geometry of the shock is not completely understood. In this paper we have performed various 2D local hybrid simulations (particle ions, massless fluid electrons) with similar characteristics (e.g., Mach number) to interplanetary shocks for both quasi-parallel and quasi-perpendicular geometries self-consistently including different percentages of He++^{++} particles. We have found changes in the shock transition behavior as well as in the temperature anisotropy as functions of both the shock geometry and He++^{++} particle abundance: The change of the initial θBn\theta_{Bn} leads to variations of the efficiency with which particles can escape to the upstream region facilitating or not the formation of compressive structures in the magnetic field that will produce increments in perpendicular temperature. The regions where both temperature anisotropy and compressive fluctuations appear tend to be more extended and reach higher values as the He++^{++} content in the simulations increases.Data set in h5 format corresponding to each panel of the figures of the publicatio
    corecore