16,966 research outputs found

    Mn valence instability in La2/3Ca1/3MnO3 thin films

    Full text link
    A Mn valence instability on La2/3Ca1/3MnO3 thin films, grown on LaAlO3 (001)substrates is observed by x-ray absorption spectroscopy at the Mn L-edge and O K-edge. As-grown samples, in situ annealed at 800 C in oxygen, exhibit a Curie temperature well below that of the bulk material. Upon air exposure a reduction of the saturation magnetization, MS, of the films is detected. Simultaneously a Mn2+ spectral signature develops, in addition to the expected Mn3+ and Mn4+ contributions, which increases with time. The similarity of the spectral results obtained by total electron yield and fluorescence yield spectroscopy indicates that the location of the Mn valence anomalies is not confined to a narrow surface region of the film, but can extend throughout the whole thickness of the sample. High temperature annealing at 1000 C in air, immediately after growth, improves the magnetic and transport properties of such films towards the bulk values and the Mn2+ signature in the spectra does not appear. The Mn valence is then stable even to prolonged air exposure. We propose a mechanism for the Mn2+ ions formation and discuss the importance of these observations with respect to previous findings and production of thin films devices.Comment: Double space, 21 pages, 6 figure

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Secrecy content of two-qubit states

    Get PDF
    We analyze the set of two-qubit states from which a secret key can be extracted by single-copy measurements plus classical processing of the outcomes. We introduce a key distillation protocol and give the corresponding necessary and sufficient condition for positive key extraction. Our results imply that the critical error rate derived by Chau, Phys. Rev. A {\bf 66}, 060302 (2002), for a secure key distribution using the six-state scheme is tight. Remarkably, an optimal eavesdropping attack against this protocol does not require any coherent quantum operation.Comment: 5 pages, RevTe

    Far-infrared edge modes in quantum dots

    Get PDF
    We have investigated edge modes of different multipolarity sustained by quantum dots submitted to external magnetic fields. We present a microscopic description based on a variational solution of the equation of motion for any axially symmetric confining potential and multipole mode. Numerical results for dots with different number of electrons whose ground-state is described within a local Current Density Functional Theory are discussed. Two sum rules, which are exact within this theory, are derived. In the limit of a large neutral dot at B=0, we have shown that the classical hydrodynamic dispersion law for edge waves \omega(q) \sim \sqrt{q \ln (q_0/q)} holds when quantum and finite size effects are taken into account.Comment: We have changed some figures as well as a part of the tex

    Multiple copy 2-state discrimination with individual measurements

    Full text link
    We address the problem of non-orthogonal two-state discrimination when multiple copies of the unknown state are available. We give the optimal strategy when only fixed individual measurements are allowed and show that its error probability saturates the collective (lower) bound asymptotically. We also give the optimal strategy when adaptivity of individual von Neumann measurements is allowed (which requires classical communication), and show that the corresponding error probability is exactly equal to the collective one for any number of copies. We show that this strategy can be regarded as Bayesian updating.Comment: 5 pages, RevTe

    Rotating Hele-Shaw cells with ferrofluids

    Full text link
    We investigate the flow of two immiscible, viscous fluids in a rotating Hele-Shaw cell, when one of the fluids is a ferrofluid and an external magnetic field is applied. The interplay between centrifugal and magnetic forces in determining the instability of the fluid-fluid interface is analyzed. The linear stability analysis of the problem shows that a non-uniform, azimuthal magnetic field, applied tangential to the cell, tends to stabilize the interface. We verify that maximum growth rate selection of initial patterns is influenced by the applied field, which tends to decrease the number of interface ripples. We contrast these results with the situation in which a uniform magnetic field is applied normally to the plane defined by the rotating Hele-Shaw cell.Comment: 12 pages, 3 ps figures, RevTe

    Enhancing the top signal at Tevatron using Neural Nets

    Get PDF
    We show that Neural Nets can be useful for top analysis at Tevatron. The main features of ttˉt\bar t and background events on a mixed sample are projected in a single output, which controls the efficiency and purity of the ttˉt\bar t signal.Comment: 11 pages, 6 figures (not included and available from the authors), Latex, UB-ECM-PF 94/1

    Modelling the unfolding pathway of biomolecules: theoretical approach and experimental prospect

    Full text link
    We analyse the unfolding pathway of biomolecules comprising several independent modules in pulling experiments. In a recently proposed model, a critical velocity vcv_{c} has been predicted, such that for pulling speeds v>vcv>v_{c} it is the module at the pulled end that opens first, whereas for v<vcv<v_{c} it is the weakest. Here, we introduce a variant of the model that is closer to the experimental setup, and discuss the robustness of the emergence of the critical velocity and of its dependence on the model parameters. We also propose a possible experiment to test the theoretical predictions of the model, which seems feasible with state-of-art molecular engineering techniques.Comment: Accepted contribution for the Springer Book "Coupled Mathematical Models for Physical and Biological Nanoscale Systems and Their Applications" (proceedings of the BIRS CMM16 Workshop held in Banff, Canada, August 2016), 16 pages, 6 figure

    The quantum Chernoff bound as a measure of distinguishability between density matrices: application to qubit and Gaussian states

    Get PDF
    Hypothesis testing is a fundamental issue in statistical inference and has been a crucial element in the development of information sciences. The Chernoff bound gives the minimal Bayesian error probability when discriminating two hypotheses given a large number of observations. Recently the combined work of Audenaert et al. [Phys. Rev. Lett. 98, 160501] and Nussbaum and Szkola [quant-ph/0607216] has proved the quantum analog of this bound, which applies when the hypotheses correspond to two quantum states. Based on the quantum Chernoff bound, we define a physically meaningful distinguishability measure and its corresponding metric in the space of states; the latter is shown to coincide with the Wigner-Yanase metric. Along the same lines, we define a second, more easily implementable, distinguishability measure based on the error probability of discrimination when the same local measurement is performed on every copy. We study some general properties of these measures, including the probability distribution of density matrices, defined via the volume element induced by the metric, and illustrate their use in the paradigmatic cases of qubits and Gaussian infinite-dimensional states.Comment: 16 page

    Nonradiative Electronic Deexcitation Time Scales in Metal Clusters

    Get PDF
    The life-times due to Auger-electron emission for a hole on a deep electronic shell of neutral and charged sodium clusters are studied for different sizes. We consider spherical clusters and calculate the Auger-transition probabilities using the energy levels and wave functions calculated in the Local-Density-Approximation (LDA). We obtain that Auger emission processes are energetically not allowed for neutral and positively charged sodium clusters. In general, the Auger probabilities in small NaN−_N^- clusters are remarkably different from the atomic ones and exhibit a rich size dependence. The Auger decay times of most of the cluster sizes studied are orders of magnitude larger than in atoms and might be comparable with typical fragmentation times.Comment: 11 pages, 4 figures. Accepted for publication in Phys. Rev.
    • …
    corecore