We investigate the flow of two immiscible, viscous fluids in a rotating
Hele-Shaw cell, when one of the fluids is a ferrofluid and an external magnetic
field is applied. The interplay between centrifugal and magnetic forces in
determining the instability of the fluid-fluid interface is analyzed. The
linear stability analysis of the problem shows that a non-uniform, azimuthal
magnetic field, applied tangential to the cell, tends to stabilize the
interface. We verify that maximum growth rate selection of initial patterns is
influenced by the applied field, which tends to decrease the number of
interface ripples. We contrast these results with the situation in which a
uniform magnetic field is applied normally to the plane defined by the rotating
Hele-Shaw cell.Comment: 12 pages, 3 ps figures, RevTe