24 research outputs found

    Summer and Winter Spatial Habitat Use by the Lake Erie Watersnake

    Get PDF
    In an effort to provide information to guide habitat management for the Lake Erie watersnake Nerodia sipedon insularum, a federally threatened and Ohio state endangered species, we used radiotelemetry to obtain spatial habitat data for adult snakes during the summer active season and during winter hibernation. During the summer active season, terrestrial habitat use was limited to a narrow band of shoreline. Among individuals, maximum distance inland from shore ranged from 1 to 50 m (mean = 8 m) and linear extent of shoreline ranged from 30 to 1,360 m (mean = 261 m). Winter hibernation occurred at varying distances inland with individual hibernation sites ranging from 1 to 580 m (mean = 29 m) from shore. Habitat use did not differ between males and females. Existing U.S. Fish and Wildlife Service habitat management guidelines suggest that ground-disturbing activities within potential hibernation areas (defined as terrestrial habitat within 161 m of shore) should be avoided in winter to prevent harm to hibernating snakes. They suggest further that excavation and removal of shrubs, standing or downed trees, root masses, animal burrows, piled rocks, cliffs, or bedrock within 21 m of shore should be avoided in summer to prevent harm to active snakes. Given that Lake Erie watersnakes have recovered to the point where delisting is being proposed, these habitat guidelines appear to be sufficient. However, maintaining voluntary compliance with habitat guidelines and meeting the need for continued public outreach will be vital to ensure long-term persistence

    Climatic and geographic predictors of life history variation in Eastern Massasauga (Sistrurus catenatus): A range-wide synthesis

    Get PDF
    Elucidating how life history traits vary geographically is important to understanding variation in population dynamics. Because many aspects of ectotherm life history are climate-dependent, geographic variation in climate is expected to have a large impact on population dynamics through effects on annual survival, body size, growth rate, age at first reproduction, size-fecundity relationship, and reproductive frequency. The Eastern Massasauga (Sistrurus catenatus) is a small, imperiled North American rattlesnake with a distribution centered on the Great Lakes region, where lake effects strongly influence local conditions. To address Eastern Massasauga life history data gaps, we compiled data from 47 study sites representing 38 counties across the range. We used multimodel inference and general linear models with geographic coordinates and annual climate normals as explanatory variables to clarify patterns of variation in life history traits. We found strong evidence for geographic variation in six of nine life history variables. Adult female snout-vent length and neonate mass increased with increasing mean annual precipitation. Litter size decreased with increasing mean temperature, and the size-fecundity relationship and growth prior to first hibernation both increased with increasing latitude. The proportion of gravid females also increased with increasing latitude, but this relationship may be the result of geographically varying detection bias. Our results provide insights into ectotherm life history variation and fill critical data gaps, which will inform Eastern Massasauga conservation efforts by improving biological realism for models of population viability and climate change

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    Orbitally forced ice sheet fluctuations during the Marinoan Snowball Earth glaciation

    No full text
    This work was supported by the NERC-funded project GR3/ NE/H004963/1 Glacial Activity in Neoproterozoic Svalbard (GAINS).Two global glaciations occurred during the Neoproterozoic. Snowball Earth theory posits that these were terminated after millions of years of frigidity when initial warming from rising atmospheric CO2 concentrations was amplified by the reduction of ice cover and hence a reduction in planetary albedo. This scenario implies that most of the geological record of ice cover was deposited in a brief period of melt-back. However, deposits in low palaeo-latitudes show evidence of glacial-interglacial cycles. Here we analyse the sedimentology and oxygen and sulphur isotopic signatures of Marinoan Snowball glaciation deposits from Svalbard, in the Norwegian High Arctic. The deposits preserve a record of oscillations in glacier extent and hydrologic conditions under uniformly high atmospheric CO2 concentrations. We use simulations from a coupled three-dimensional ice sheet and atmospheric general circulation model to show that such oscillations can be explained by orbital forcing in the late stages of a Snowball glaciation. The simulations suggest that while atmospheric CO2 concentrations were rising, but not yet at the threshold required for complete melt-back, the ice sheets would have been sensitive to orbital forcing. We conclude that a similar dynamic can potentially explain the complex successions observed at other localities.PostprintPeer reviewe
    corecore