7,727 research outputs found

    Rotons and Quantum Evaporation from Superfluid 4He

    Full text link
    The probability of evaporation induced by R+R^+ and RR^- rotons at the surface of superfluid helium is calculated using time dependent density functional theory. We consider excitation energies and incident angles such that phonons do not take part in the scattering process. We predict sizable evaporation rates, which originate entirely from quantum effects. Results for the atomic reflectivity and for the probability of the roton change-mode reflection are also presented.Comment: 11 pages, REVTEX, 3 figures available upon request or at http://anubis.science.unitn.it/~dalfovo/papers/papers.htm

    Multi-Epoch Observations of HD69830: High Resolution Spectroscopy and Limits to Variability

    Get PDF
    The main-sequence solar-type star HD69830 has an unusually large amount of dusty debris orbiting close to three planets found via the radial velocity technique. In order to explore the dynamical interaction between the dust and planets, we have performed multi-epoch photometry and spectroscopy of the system over several orbits of the outer dust. We find no evidence for changes in either the dust amount or its composition, with upper limits of 5-7% (1 σ\sigma per spectral element) on the variability of the {\it dust spectrum} over 1 year, 3.3% (1 σ\sigma) on the broad-band disk emission over 4 years, and 33% (1 σ\sigma) on the broad-band disk emission over 24 years. Detailed modeling of the spectrum of the emitting dust indicates that the dust is located outside of the orbits of the three planets and has a composition similar to main-belt, C-type asteroids asteroids in our solar system. Additionally, we find no evidence for a wide variety of gas species associated with the dust. Our new higher SNR spectra do not confirm our previously claimed detection of H2_2O ice leading to a firm conclusion that the debris can be associated with the break-up of one or more C-type asteroids formed in the dry, inner regions of the protoplanetary disk of the HD69830 system. The modeling of the spectral energy distribution and high spatial resolution observations in the mid-infrared are consistent with a \sim 1 AU location for the emitting material

    Evolution from protoplanetary to debris discs: The transition disc around HD 166191

    Full text link
    HD 166191 has been identified by several studies as hosting a rare and extremely bright warm debris disc with an additional outer cool disc component. However, an alternative interpretation is that the star hosts a disc that is currently in transition between a full gas disc and a largely gas-free debris disc. With the help of new optical to mid-IR spectra and Herschel imaging, we argue that the latter interpretation is supported in several ways: i) we show that HD 166191 is co-moving with the ~4 Myr-old Herbig Ae star HD 163296, suggesting that the two have the same age, ii) the disc spectrum of HD 166191 is well matched by a standard radiative transfer model of a gaseous protoplanetary disc with an inner hole, and iii) the HD 166191 mid-IR silicate feature is more consistent with similarly primordial objects. We note some potential issues with the debris disc interpretation that should be considered for such extreme objects, whose lifetime at the current brightness is mush shorter than the stellar age, or in the case of the outer component requires a mass comparable to the solid component of the Solar nebula. These aspects individually and collectively argue that HD 166191 is a 4-5 Myr old star that hosts a gaseous transition disc. Though it does not argue in favour of either scenario, we find strong evidence for 3-5 um disc variability. We place HD 166191 in context with discs at different evolutionary stages, showing that it is a potentially important object for understanding the protoplanetary to debris disc transition.Comment: accepted to MNRAS, fixed typos in abstract and axis labe

    Bose-Einstein Condensation at a Helium Surface

    Full text link
    Path Integral Monte Carlo was used to calculate the Bose-Einstein condensate fraction at the surface of a helium film at T=0.77KT=0.77 K, as a function of density. Moving from the center of the slab to the surface, the condensate fraction was found to initially increase with decreasing density to a maximum value of 0.9 before decreasing. Long wavelength density correlations were observed in the static structure factor at the surface of the slab. Finally, a surface dispersion relation was calculated from imaginary-time density-density correlations.Comment: 8 pages, 5 figure

    The Evaluation and Followup of Children Referred to Pediatric Endocrinologists for Short Stature

    Get PDF
    Objective. To characterize the pediatric endocrinologists' evaluation and followup of short-statured patients. Study Design. Observational study of 21,548 short-statured children (April 1996 to December 1999). Baseline demographics, laboratory testing, height standard deviation score (SDS), target height, and height relative to target height were analyzed at initial and return visits with the specialist. Patients were scheduled for at least one return visit and no recombinant human growth hormone therapy was administered. Results. Mean patient age was 8.6 years with a mean height SDS of −2.1. Patients were predominantly male (69%), prepubertal (73%), and white (76%). Few screening tests were obtained during initial evaluation. Nearly 40% of children did not return for their second scheduled visit. The follow-up rate was unrelated to demographics or degree of short stature. Conclusions. Low return rates limit specialists' ability to monitor growth or obtain laboratory testing over time. Further studies are needed to determine which tests should be obtained at the initial clinic visit as well as the basis for the low return rate in this group of children

    Dispersion of Ripplons in Superfluid 4he

    Full text link
    A detailed study of the dispersion law of surface excitations in liquid \hef at zero temperature is presented, with special emphasis to the short wave length region. The hybridization mechanism between surface and bulk modes is discussed on a general basis, investigating the scattering of slow rotons from the surface. An accurate density functional, accounting for backflow effects, is then used to determine the dispersion of both bulk and surface excitations. The numerical results are close to the experimental data obtained on thick films and explicitly reveal the occurrence of important hybridization effects between ripplons and rotons.Comment: 23 pages, REVTEX 3.0, 11 figures upon request, UTF-326/9

    Debris Disks: Probing Planet Formation

    Full text link
    Debris disks are the dust disks found around ~20% of nearby main sequence stars in far-IR surveys. They can be considered as descendants of protoplanetary disks or components of planetary systems, providing valuable information on circumstellar disk evolution and the outcome of planet formation. The debris disk population can be explained by the steady collisional erosion of planetesimal belts; population models constrain where (10-100au) and in what quantity (>1Mearth) planetesimals (>10km in size) typically form in protoplanetary disks. Gas is now seen long into the debris disk phase. Some of this is secondary implying planetesimals have a Solar System comet-like composition, but some systems may retain primordial gas. Ongoing planet formation processes are invoked for some debris disks, such as the continued growth of dwarf planets in an unstirred disk, or the growth of terrestrial planets through giant impacts. Planets imprint structure on debris disks in many ways; images of gaps, clumps, warps, eccentricities and other disk asymmetries, are readily explained by planets at >>5au. Hot dust in the region planets are commonly found (<5au) is seen for a growing number of stars. This dust usually originates in an outer belt (e.g., from exocomets), although an asteroid belt or recent collision is sometimes inferred.Comment: Invited review, accepted for publication in the 'Handbook of Exoplanets', eds. H.J. Deeg and J.A. Belmonte, Springer (2018

    Spatiotemporal Amplitude and Phase Retrieval of Bessel-X pulses using a Hartmann-Shack Sensor

    Get PDF
    We propose a new experimental technique, which allows for a complete characterization of ultrashort optical pulses both in space and in time. Combining the well-known Frequency-Resolved-Optical-Gating technique for the retrieval of the temporal profile of the pulse with a measurement of the near-field made with an Hartmann-Shack sensor, we are able to retrieve the spatiotemporal amplitude and phase profile of a Bessel-X pulse. By following the pulse evolution along the propagation direction we highlight the superluminal propagation of the pulse peak

    Nodal points and the transition from ordered to chaotic Bohmian trajectories

    Full text link
    We explore the transition from order to chaos for the Bohmian trajectories of a simple quantum system corresponding to the superposition of three stationary states in a 2D harmonic well with incommensurable frequencies. We study in particular the role of nodal points in the transition to chaos. Our main findings are: a) A proof of the existence of bounded domains in configuration space which are devoid of nodal points, b) An analytical construction of formal series representing regular orbits in the central domain as well as a numerical investigation of its limits of applicability. c) A detailed exploration of the phase-space structure near the nodal point. In this exploration we use an adiabatic approximation and we draw the flow chart in a moving frame of reference centered at the nodal point. We demonstrate the existence of a saddle point (called X-point) in the vicinity of the nodal point which plays a key role in the manifestation of exponential sensitivity of the orbits. One of the invariant manifolds of the X-point continues as a spiral terminating at the nodal point. We find cases of Hopf bifurcation at the nodal point and explore the associated phase space structure of the nodal point - X-point complex. We finally demonstrate the mechanism by which this complex generates chaos. Numerical examples of this mechanism are given for particular chaotic orbits, and a comparison is made with previous related works in the literature.Comment: 32 pages, 13 figures, Accepted for publication in Journal of Physics
    corecore