11,399 research outputs found

    Effect of the Diurnal Atmospheric Bulge on Satellite Accelerations

    Get PDF
    Formulas are developed to express the secular acceleration of a satellite on passing through an atmosphere which bulges in the sunward direction and in which the scale height increases with height, these two properties of the high atmosphere having previously been established from satellite observations. Comparison of the new formulas with those for a spherically symmetric atmosphere of constant scale height indicates that deduced atmospheric densities may be systematically incorrect by up to 50 or 60 percent at heights of 500 to 600 km when the earlier and simpler equations are used

    On estimating the Venus spin vector from data obtained during the planetary explorer mission

    Get PDF
    Venus spin vector estimation using planetary Explorer spacecraft dat

    The Herts and Minds study: feasibility of a randomised controlled trial of Mentalizationbased Treatment versus usual care to support the wellbeing of children in foster care

    Get PDF
    © The Author(s). 2019 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.Background: There is a lack of well-designed randomized controlled trials (RCTs) to investigate the efficacy of psychological therapies for children in foster care with emotional and behavioural difficulties. Mentalization-based therapy (MBT) focuses on supporting the carer-child relationship by promoting reflective capacity. This study examined the feasibility and acceptability of an RCT of MBT, delivered in a family-format, for children who are in foster care in the UK. Method: Herts and Minds was a phase II, blinded feasibility RCT with follow-up of at 12 and 24 weeks post-randomisation. Participants were children (age 5-16) in foster care referred to a targeted mental health service, who had some level of difficulty as identified by the Strengths and Difficulties Questionnaire (SDQ). Aims were to assess: the feasibility of recruitment processes and study uptake; capacity to train mental health practitioners to deliver MBT to an acceptable level of treatment integrity; establish acceptability and credibility of MBT as an intervention for children in foster care; establish feasibility and acceptability to participants of conducting an RCT; and estimate the likely treatment efficacy effect size. Participants were randomly allocated to either MBT (n = 15) or Usual Clinical Care (UCC) (n = 21) individually or in sibling groups. A range of qualitative and quantitative data was gathered to assess feasibility. Results: Feasibility was established with regard to: capacity to recruit participants to a study; capacity to train mental health practitioners to deliver MBT to an acceptable level of treatment integrity; acceptability and credibility of MBT; and feasibility and acceptability to participants of conducting an RCT. A number of issues made it difficult to estimate a likely treatment efficacy effect size. Conclusion: With modifications, it is feasible to run an RCT of MBT for children in foster care. Both the therapy and research design were acceptable to participants, but modifications may be needed regarding both the timing of assessments and the identification of appropriate primary outcome measures. Given the lack of evidenced based therapies for this population, such a trial would be a significant contribution to the field. Findings may be useful for other groups planning clinical trials of psychological therapies for children in foster care. Trial registration: ISRCTN 90349442. The trial was retrospectively registered on 6 May 2016.Peer reviewedFinal Published versio

    Debris discs in binaries: a numerical study

    Full text link
    Debris disc analysis and modelling provide crucial information about the structure and the processes at play in extrasolar planetary systems. In binary systems, this issue is more complex because the disc should in addition respond to the companion star's perturbations. We explore the dynamical evolution of a collisionally active debris disc for different initial parent body populations, diverse binary configurations and optical depths. We focus on the radial extent and size distribution of the disc at a stationary state. We numerically follow the evolution of 10510^{5} massless small grains, initially produced from a circumprimary disc of parent bodies following a size distribution in dNs3.5dN \propto s^{-3.5}ds . Grains are submitted to both stars' gravity as well as radiation pressure. In addition, particles are assigned an empirically derived collisional lifetime. For all the binary configurations the disc extends far beyond the critical semimajor axis acrita_crit for orbital stability. This is due to the steady production of small grains, placed on eccentric orbits reaching beyond acrita_crit by radiation pressure. The amount of matter beyond acrit depends on the balance between collisional production and dynamical removal rates: it increases for more massive discs as well as for eccentric binaries. Another important effect is that, in the dynamically stable region, the disc is depleted from its smallest grains. Both results could lead to observable signatures. We have shown that a companion star can never fully truncate a collisionally active disc. For eccentric companions, grains in the unstable regions can significantly contribute to the thermal emission in the mid-IR. Discs with sharp outer edges, especially bright ones such as HR4796A, are probably shaped by other mechanisms.Comment: accepted for publication in A&

    Hydrodynamic View of Wave-Packet Interference: Quantum Caves

    Get PDF
    Wave-packet interference is investigated within the complex quantum Hamilton-Jacobi formalism using a hydrodynamic description. Quantum interference leads to the formation of the topological structure of quantum caves in space-time Argand plots. These caves consist of the vortical and stagnation tubes originating from the isosurfaces of the amplitude of the wave function and its first derivative. Complex quantum trajectories display counterclockwise helical wrapping around the stagnation tubes and hyperbolic deflection near the vortical tubes. The string of alternating stagnation and vortical tubes is sufficient to generate divergent trajectories. Moreover, the average wrapping time for trajectories and the rotational rate of the nodal line in the complex plane can be used to define the lifetime for interference features.Comment: 4 pages, 3 figures (major revisions with respect to the previous version have been carried out

    Debris disk size distributions: steady state collisional evolution with P-R drag and other loss processes

    Full text link
    We present a new scheme for determining the shape of the size distribution, and its evolution, for collisional cascades of planetesimals undergoing destructive collisions and loss processes like Poynting-Robertson drag. The scheme treats the steady state portion of the cascade by equating mass loss and gain in each size bin; the smallest particles are expected to reach steady state on their collision timescale, while larger particles retain their primordial distribution. For collision-dominated disks, steady state means that mass loss rates in logarithmic size bins are independent of size. This prescription reproduces the expected two phase size distribution, with ripples above the blow-out size, and above the transition to gravity-dominated planetesimal strength. The scheme also reproduces the expected evolution of disk mass, and of dust mass, but is computationally much faster than evolving distributions forward in time. For low-mass disks, P-R drag causes a turnover at small sizes to a size distribution that is set by the redistribution function (the mass distribution of fragments produced in collisions). Thus information about the redistribution function may be recovered by measuring the size distribution of particles undergoing loss by P-R drag, such as that traced by particles accreted onto Earth. Although cross-sectional area drops with 1/age^2 in the PR-dominated regime, dust mass falls as 1/age^2.8, underlining the importance of understanding which particle sizes contribute to an observation when considering how disk detectability evolves. Other loss processes are readily incorporated; we also discuss generalised power law loss rates, dynamical depletion, realistic radiation forces and stellar wind drag.Comment: Accepted for publication by Celestial Mechanics and Dynamical Astronomy (special issue on EXOPLANETS

    Elucidating the role of hyperfine interactions on organic magnetoresistance using deuterated aluminium tris(8-hydroxyquinoline)

    Get PDF
    Measurements of the effect of a magnetic field on the light output and current through an organic light emitting diode made with deuterated aluminium tris(8-hydroxyquinoline) have shown that hyperfine coupling with protons is not the cause of the intrinsic organic magnetoresistance. We suggest that interactions with unpaired electrons in the device may be responsible.Comment: Submitte

    Vertical structure of debris discs

    Full text link
    The vertical thickness of debris discs is often used as a measure of these systems' dynamical excitation and as clues to the presence of hidden massive perturbers such as planetary embryos. However, this argument could be flawed because the observed dust should be naturally placed on inclined orbits by the combined effect of radiation pressure and mutual collisions. We critically reinvestigate this issue and numerically estimate what the "natural" vertical thickness of a collisionally evolving disc is, in the absence of any additional perturbing body. We use a deterministic collisional code, following the dynamical evolution of a population of indestructible test grains suffering mutual inelastic impacts. Grain differential sizes as well as the effect of radiation pressure are taken into account. We find that, under the coupled effect of radiation pressure and collisions, grains naturally acquire inclinations of a few degrees. The disc is stratified with respect to grain sizes, with the smallest grains having the largest vertical dispersion and the bigger ones clustered closer to the midplane. Debris discs should have a minimum "natural" observed aspect ratio hmin0.04±0.02h_{min}\sim 0.04\pm0.02 at visible to mid-IR wavelengths where the flux is dominated by the smallest bound grains. These values are comparable to the estimated thicknesses of many vertically resolved debris discs, as is illustrated with the specific example of AU Mic. For all systems with hhminh \sim h_{min}, the presence (or absence) of embedded perturbing bodies cannot be inferred from the vertical dispersion of the discComment: accepted for publication in Astronomy and Astrophysics (full abstract in the pdf file
    corecore