8 research outputs found

    Assessing the Static and Dynamic Efficiency of Scientific Research of HEIs China: Three Stage DEA–Malmquist Index Approach

    No full text
    Higher education institutions (HEIs) are the key to the economic and social development of a country. However, the recent advancements of higher education institutions’ universities in China have become a pivotal factor contributing to their swift growth. Considering the impact of the external environment, applying a three-stage data-envelopment analysis (DEA) and the Malmquist index method, we evaluated the static and dynamic efficiency of input–output data of scientific research produced by universities directly under the Ministry of Education in the period of 2010 to 2017. Results showed that the three stage DEA model is more accurate than the traditional DEA method for measuring the efficiency of scientific research input and universities’ output. The overall efficiency of universities’ scientific research activities increased at an average annual rate of 3.7% from 2010 to 2017. Further analysis showed that the optimization of the scale was the primary internal factor able to promote the efficiency of scientific research in universities. Technological progress slightly diminishes the efficiency of scientific research in universities, which should, therefore, take measures to improve pure technical efficiency to enlarge the scale of their scientific research according to the characteristics of scientific research efficiency. Such steps will strengthen internal motivation towards scientific research efficiency in universities

    Microstructure, Interface and Strengthening Mechanism of Ni-CNTs/AZ91 Magnesium Matrix Composites

    No full text
    Ni-CNTs/AZ91 magnesium matrix composites were fabricated by ultrasound treatment combined with a semi-solid stirred method for the first time. The agglomerated spherical Ni-CNTs transferred from spherical shape to clear tubular shape after pre-dispersion treatment. For the Ni-CNTs/AZ91 magnesium matrix composite prepared by semi-solid stirring followed by ultrasonic treatment, Ni-CNTs were evenly distributed in the magnesium matrix or wrapped on the β (Mg17Al12) phase. Mg2Ni were formed at the interface of the magnesium matrix and CNTs by in-situ reaction, which significantly improved the interface bonding strength of CNTs and the Mg matrix. The tensile strength and elongation of 1.0wt.% Ni-CNTs/AZ91 magnesium matrix composites were improved by 36% and 86%, respectively, compared with those of AZ91 matrix alloy. After Ni-CNTs were added to AZ91 matrix alloy, more dimples were observed at the fracture surface. The fracture behavior of Ni-CNTs/AZ91 composite was transformed from a cleavage fracture of AZ91 matrix alloy to a quasi-cleavage fracture. Meanwhile, the CNTs dispersed near the fracture showed a “pull-out” state, which would effectively bear and transfer loads. The strengthening mechanism of CNTs was also discussed
    corecore